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ABSTRACT

The three-dimensional singular stress field near the terminal
point O of the crack front edge at the surface of an elastic body is
investigated. Displacements are assumed to be of the form rlppF(6,¢)
where spherical coordinates r, 8, ¢ are used, and where p is the distance
from the singularity line (crack front edge or notch edge) and p is a
given constant. The variational principle governing the displacement
distribution on a unit sphere about point O is derived from the dif-
ferential equations of equilibrium, and more directly, from the po-
tential energy. A finite element method developed on the unit sphere
is used to reduce the problem to the form k(A)x = O where x is the
columm matrix of the nodal values of the displacements on the unit
sphere and 5(1) is a square matrix, all coefficients of which are
quadratic polynomials in A. It is proved that the variatiomal princi-
ple as well as the matrix k must be nonsymmetric, which implies that
complex eigenvalues )\ are possible. Several numerical and analytical
solutions are compared and agree closely with the present work. By
energy flux arguments it is found that the front edge of a propagating
crack must terminate at the surface obliquely at a certain angle,
whose dependence upon the inclination of a crack plame is also solved.
The angle is the same for Modes II and III, but different for Mode I.
For Mode I, the surface point trails behind the interior of the pro-
pagating crack, while for Modes II and III it moves ahead. Consequently,
a combination of Mode I with Modes II and III is impossible at the

surface terminal point of a propagating crack whose plane is orthogonal.
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When the plane is inclined, the three intensify factors can com-
bine only in certain fixed ratios. The crack edge angle is a ;
. function of the angle of the crack plane. Some results are also

presented for notches and for cracks that intersect a two-material

interface.
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INTRODUCTION

Crack propagation in thin sheets is undoubtedly influenced by
the surface termination of the crack front edge, where the planar
elasticity solution for the crack-tip singularity does not apply and
the singular stress field is of three-dimensional nature. A similar
situation arises when the crack front edge intersects a two-material
interface. Knowledge of the three-dimensional singularity is needed
to determine the curved shape of the crack front edge across a thin
sheet or plate, and the energy release rate for the advance of the
crack front edge as a whole.

The three-dimensional displacement field near the terminal point
of the crack front edge at the surface of an elastic body is investi-
gated in Chapter I using spherical corrdinates r, 8, ¢. The basic
idea of ;he present method of solution consists of an extension of the
Knein-William's method [1,2] by assuming that all three displacements
are of the form rxppF(9,¢) [3], where p is the distance from the
singularity line, such as the crack front edge or notch edge; p is a
given constant; F(6,4) is an arbitrary function of the coordinates
8 and ¢; r is the distance from the terminal point O; and A is the
strength singularity exponent. Similar techniques for solving two-
dimensional axisymmetric problems have also been employed in Refs.
{4,5,6]. A partly similar approach has been used by Swedlow and
Karabin [7].

The variational equation governing the displacement distributiom

on a unit sphere about the sing-larity point O is derived from the




differential equations of equilibrium and boundary conditions, and
an alternate derivation is obtained more directly from the potential
energy. It is proved that the variational principle must be non-
symmetric and therefore complex eigenvalues )\ are possible. Thus,
the variational principle is of general applicability since it can
handle crack and notches of any orientation and size as well as
problems of two dissimilar materials.

The variational equation derived in Chapter I is suitable for
solution by numerical techniques. In Chapter II, the finite
element method is applied and the problem is reduced to the form
k(\)x = 0, where x is the column matrix of the nodal values of the
displacements on the unit sphere and k(A) is a banded square matrix,
all coefficients of which are quadratic polynomials in A. The method
of search for the eigenvalue involves a conversion to a non-homoge-
neous system of equations and an iteration scheme. This method has
been used in connection with other problems which lead to equations
of this type [3]. Convergence patterns of the eigenvalues calculated
with increasing number of finite elements is studied carefully and an
extrapolation technique, based on Richardson's h™ deferred approach
to the limit (8] is proposed.

Recently, various numerical and analytical solutions related to
this work have been published. Benthem [9] and Kawai, Fagitaui, and
Kamagai [10] obtained different analytical solutions to the problem
of a Mode I crack whose front edge and plane are perpendicular to
the surface. However, there is some question on the convergence of

the method presented by the latter authors, whose solutions disagree
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with the results of Benthem as well as the present work. Also, .

significant progress has been made in potential theory problems by

. Morrison and Lewis [11] and by Keer and Parihar [12], [13]. The former

§' authors succeeded in obtaining a differential equation with the use

| of conical coordinates suited for their problems. Keer and Parihar
obtained a singular intergral equation which is solved numerically.
They extended their solution to some three-dimensional singularities

{ in the interior of an elastic space which is irreducible to potential

| theory [l4a]. Keer and Parihar also solved the problem of rigid corner

stamp of small angle on a semi-infinite body for which the solution

is complex [14b].

These solutions provide a valuable check on the present method

of solution and are compared separately in Chapter III, where further

numerical results are presented. These are; a crack whose front edge ;

and plane are perpendicular to the surface, where it is shown that

Modes II and III are coupled and inseparable at the surface point;

a crack whose front edge is inclined but whose plane remains perpen-

dicular to the surface in all modes; and a crack whose front edge and

plane are inclined in all modes. From energy flux considerations,

these results show that upon propagation the surface point of a crack

in symmetric opening will trail behind its interior, while in anti-

symmetric openings the surface point will move ahead of the crack

interior. It is also shown that for an orthogonal crack in combined ﬂ

openings, the surface point will propagate in either symmetric mode

or antisymmetric modes, but not in a combination. The numerical




results are compared with some reéently reported fractographic
measurements provided by Bell and Feeney [15].

Recently, John P. Benthem of Delft, Netherlands privately
communicated (April, 1978) results based on a finite difference
method directly applied to the differential equations of equilib-
rium and boundary conditions. His results, which have not yet
been published, are alsc compared in Chapter 111. They agree

quite closely with the present solutions.




CHAPTER I

VARIATIONAL EQUATION FOR
THE EIGENSTATES

1.1 Introduction

The most powerful method used to determine near-singularity fields
is that of asymptotic analysis (separation of variables). The method
was first used by Knein [1] (who thanked T. von Kirmén for suggesting
the basic approach) 1in a problem of plane elasticity, Ilater
solved independently by Williams [2] and Karp and Karal [16]. Recently,
various authors have extended this procedure to three dimensions to
investigate the near-singularity behavior for different problems
[3,11-14].

The present work makes use of the same method in order to formu-
late a general variational equation for cracked or notched linear
elastic bodies. The formulation gonsists of the classical diffe-
rential equations of equilibrium of linear elasticity and the boundary
conditions associated with the problem. A variational statement is pro-
posed and then reduced to a variational equation applicable to nu-
merical methods.

The variational equation determines the behavior of the material

near the point of singularity. The basic assumption is that near

i i

such a point the leading terms of displacement components are

of the form<rAF(B,¢), where A is an unknown constant and F(@,¢) an

arbitrary function of the angles 8 and ¢.



1.2 Governing Equations of Elasticity
The problems considered in this work deal with singularities in

a linear elastic material. As a first step, the equations governing
such material are introduced. For reasons which will become clear in
later sections, these equations are written in the spherical coordinate
system (r,8,p) and in terms of their respective displacement components
(u,vyw). No dynamic terms or body forces are present since the

solution is confined to small neighborhoods of the singularity.

A.) Equations of equilibrium.

The well known classical differential equations of equilibrium
expressed in terms of dilatation and rotation and transformed to spherical
coordinates, take the form [Ref. 17, pages 141 and 56]:

(X +2)r sin 8 -g%

o,
- 2p{-a§e- (sin 8) - ?g- 1 =0 (1.1a)

CT
% -l - & (W, stn )} =0 (1.1b)

(x +2u)sin 6 3

—

=0 (1. 1e)

w
L -2 () - 55 )

3¢

where X and U are the Lamé's constants, A is the cubical dilatation and

~

w_, .‘EB’ and W, are the components of rotation:

¢

A= — {_B_ (r?u sin §) + (rv sin 8) + (rw)} (1.2a)
rzsin 2] or




-~ 1 9 9
25 = oy (55 (rw sin 8) - % (xv)}

-~ 1 2u d
oW, = —— { - £ (rw sin 8)}
] rzsin g 3 Tar

- 1.3 3u
2w¢=;{'a—r (rv)'ae}

B.) Strain-displacement relationms.

(1.2b)

(1.2¢)

(1.2¢)

When a body is slightly deformed the strain-displacement re-

lationships written in spherical coordinates take the form [Ref. 17,

page 561:

1 1 1
€¢ = T sin © W¢ +fveoth + g

1 v

=1y, .1 1
r¥ ~ T ¥ cot &+ rsin8 ¢

(1.3a)

(1.3b)

(1.3¢)

(1.3d)

(1.3e)

(1.3£)




where, single subscripts on u, v, and v indicate partial derivatives,

and double subscripts on e indicate strains.

C.) Stress-strain relations

When a linear-elastic isotropic homogeneous material is slightly
strained the stress components are linear functions of the strain
components. With the strain components defineti by Eqs. (1.3 a-f) the

stress components are [Ref. 17, page 126]:

Opr ™ X e +uu e (1.ka)

090 = x e +uu eee (l-hb)

Opp ™ X e +uu &4 (1.4¢)

Ogg = ee¢ (1.44)

Opr =M 4 (1.ke)

Trg ™M €pg (1.4£)
where,

eme., tegy tey (1.kg)
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Then, the surface tractions, Ti’ on a surface of unit normal, n

i,

written in index notation, are [Ref. 18, page 64]:

Ti - oiij s 1,3 =1r,68,¢ (1.5)

D.) Comment

It is well known that the material behavior near a crack tip or
a notch apex will be nonlinear. As is also typical of all cases
possessing singularity regions. The stress values will, in fact,
become unbounded at the singularity, although actually the maximum
stress cannot exceed that at which plastic flow takes place. Neverthe-
less, the theory of linear elasticity can adequately describe the
not too close stress field if the plastic region is small. The present

work is limited to such cases.

1.3 The Williams' Method

Consider the mathematical representation of a crack plane inter-
secting a semi-infinite elastic body. Fig. 1.1 shows, as an example,
a crack plane as well as its crack front edge to be normal to the
surface. For illustration purposes, an imaginary body is cut out by
a spherical surface of small radius and centered at the point where
the crack front edge and the surface meet, i.e., point 0, Fig. 1l.1l.
This normal presentation is used to indicate spherical coordinates,

although the equations of elasticity apply to the entire body.
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A.) Separation of variables.

Consider the point O, located at the smooth line 0Q' terminating
at point O, e.g., Fig- 1.1l. 1let r,6,p be a spherical coordinate sys-
tem centered at point O, such that ray 6§ = O coincides with the crack
front edge, line 00'. It will be assumed that in the vicinity of
point O the displacement components in the r,8,p directions are func-
tions whose dependence on r can be separated from their dependence on

8 and ¢, i.e., the separation of variables technique will be applied:

u(r,8,¢) = rlF(e s0) (1.6a)
v(r,0,8) = £'G(8,0) (1.6b)
“w(r,8,8) = £H(E,9) (1.6¢)

with the restriction that the exponent ). have a limiting value

Re(\) > -, in order for the strain energy to remain finite near

point O, r » O. Hence, the objective of this work is to find the

smallest possible value for the exponent A, Re(\) > -%, giving the
gravest state of stress for the vicinity of point O.
In this sense, point O is considered a singular point, line 00'

a singular line, and )\ the eigenvalue.

The proof for the well-established theorems of uniqueness and

existence for the problems considered here is beyond the scope of




Fig. 1l.1: Geometry of the crack intersecting a

‘ surface, in spherical coordinates.

¢ A
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r Sg 8¢

Fig. 1.2: Domain to be solved in
fictitious (6-¢)-plane.



this work. Even for regular finite regions, these theorems are al-
ready "not distinguished by simplicity" [19, page 89]. Benthem [9] o
who solved analytically one of the problems presented in Chapter III,
writes: "The following theorems, though without proof, will be con-
sidered to be valid for elastic regions in the form of infinite cones
(semi-infinite bodies).

1.) If an infinite conical region is loaded by stresses which
behave along the generators like rx_l and the displacements are pre-
scribed which are zero or behave like rx, then there is generally a
solution for the interior stresses of the form O = rk-lfxy(e¢), etc.

with the exception of an infinite enumerable set of values for A.

ii.) For every value of A of the infinite enumerable set meant under
(i.), there exists a state of stress given by the above expressions,
whereof the prescribed stresses and displacements are zero. Such
states of stress are called the eigenfunctions of the cone in question.
iii.) The infinite enumerable states of stress (with Re(\) > -%)

meant in (ii.), are able, in principle, to meet every set of three
boundary conditions at r = constant (a finite cone) provided the
boundary conditions do not require a concentrated force or moment at
| the vertex.

These three theorems are, if not proved, generally accepted im

the corresponding two-dimensional analysis of wedges [2,20,21]."

B.) Modified equations of equilibrium.
. Substituting the expressions (l.6a-c) into the differential

equations of equilibrium (1.la-¢) it was found that the radial co-




A-1

ordinate, mainly, r" = factors out of the equations. The following
equations of equilibrium in the r,8, and ¢ directions in terms of the
functions F,G, and H and the exponent A result:

1
X, = (Q+2)(X-1)()\F+F+G9+G cot e+m H¢) - [(k+1)Ge -Fee]

1 1 _
- cot 9[("+1)G'Fe] + sin (sin 6 F¢¢ -H¢->‘H¢) =0
(1.7a)
X, = (Q+2)()\F, +2F, +G,, +G, cot B - 1 G+ L H
8 8 g 7Be 78 sin29 sin 8 "6¢

-ﬁ%) -;—irll—é-(ag¢+u¢ cot § -gﬁl—gcw)
+A[(A+1)6 - Fgl = 0 (1.7b)
X = 1 (Q+2)(\F, +2F +G, cot 8 + .1 H )
1) sin 8 (1) ) 1) sin 0 ¢¢
- )‘(snl; 5 F¢-H-m) + (HEG+H9 cot § - A H
+880 o L1 _ ¢ y.p (1.7¢)

singe ¢ sin 8 T8¢

where, subscripts of F,G, and H denote partial derivatives, e.g.,

Fee = azr/aee, v = Poisson ratio,
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Q = 2v/(1-2v) (1.8)
and Xr’xe s X¢ symbolically represent the new modified equations of

equilibrium in the r, 9, and ¢ directions, respectively.

C.) Modified stress-strain relatioms.
Substituting Eqs. (l.6a-c) into the expressions for the spherical
stress components, Eqs. (l.ha-f), the following modified stress ex-

presssions result:

1

S, * urx‘l Opr = Q(A\F + 2F + Gy + G cot § + -5 5 ¢) + 2\F
(1.9a)
s = —t =AG -G+F (1.9b)
0 Al Org 8 .
1
+ 2(ce + F) (1.9¢)
s, = —_— Cp, = - Hcot g + 1 G (1.9d)
68 ~ T A-1%¢ " M sing % :
1
= i F + \H - {1.9e)

! Crg¢ ~ sin &

Sr¢
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s . = — o.. = Q\F +2F + G +Gcote+—-1—- H,)
o9 urk'l () 9 sin 8 "o 7
1
+ 2(sin 5 H¢ + G cot 8 +F) (1.9£)
in which |y is the elastic shear modulus, and sn_,...,s¢¢ symbolically

represent the stresses.

D.) Comment.

It is interesting to note that one may expect an infinite
enumerable number of real and complex eigenvalues )\, i.e., not a con-
tinuous spectrum, for the problem of a semi-infinite homogeneous body.
Furthermore, the real part of each of the complex roots with positive
real part is always greater than the smallest positive real root,
which is also the case for plane problems and is rigorously proved in
Ref. [16]. Therefore, the dominant term that governs the behavior
near point O, Fig. 1.1, is given by the smallest real root.

Of course, this last observation will not apply to problems of
a crack intersecting two-material interfaces. In such cases all
eigenvalues )\ are expected to be complex in nature, such as those found
in plane strain elasticity [22,23]. The term of interest will then
be given by the smallest Re()).

It may be desired to write a generalized Fourier analysis to
include the displacement fields for different eigenvalues which must
result from the solution of an infinite set of equations. However, the

orthogonality properties in three-dimensions might be insufficient to
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determine their participation. This is also the case in plane problems,.
as Williams [24] noted: "... let it suffice to point out that the
solutions £(\,a,v) = O yield an infinite number of eigenvalues which
may be complex. After ordering these values according to their absolute
magnitudes, one may construct from them an infinite set of eigenfunc-
tions whose elements are non-orthogonal. Furthermore, the completeness
of the set, although intuitively probable, has not been mathematically
established." The present literature seems to lack the proof for the
completeness of the set, even for two dimensional problems.

In any event, let such set intuitively exist for the three
dimensional problem. Then, in the vicinity of point O, the behavior
of the displacement and stress fields will be determined by the eigen-
function characterized by the smallest eigenvalue; provided the loading

near such point is not critical, see theorem (iii.) page 12.

1.4 cConstruction of a Variational Equation

A.) Cartesian (6-¢)-plane.

Finite element studies are simplified when flat planes, rather than
curved surfaces are used. Expecting that the solution to these problems
will make use of numerical techniques, the domain 0'ACO of a unit
sphere from Fig. (1.1) is visualized in a fictitious (6-¢)-plane shown
in Fig. (1.2). This approach has been successfully developed in
Ref. [3,page 226].

The singularity ray 00', Fig. (1.1) placed on the pole of its

spherical coordinate system appears in the (8-¢)-plane as a straight

line segment at 6 = O. The surface of the semi-infinite body £ = n/2,




0 £ ¢ < 27 appears in the (8-¢)-plane as a straight line segment

8 =n/2, 0 ¢ = 2m, etc.

Let then n = (ne,n¢) be the unit normal to the surface of the
body when plotted in the (8-¢)-plane, with 8 and ¢ being regarded as
the cartesian coordinates in such a fictitious plane. Thus, n =
(-d8/ds,d¢/ds) where s is the length of a boundary curve, or ne/n¢ =
-d9/dg where do and d¢ are increments along such boundary in the 6

and ¢ directions, respectively.

B.) Free surface conditions.

It will be assumed that in a sufficiently small neighborhood of
point O, Fig. (1.1), there are no loads applied at the body surfaces
(surfaces formed by radial rays emanating from point O), or at the
cracked surfaces.

Indeed, the purpose of this work is to determine all possible
states, called eigenstates which are strictly characterized by the
eigenvalues ). Hence, surface loads may be prescribed at body surfaces
sufficiently remote from point O, for which the differential equatioms
of equilibrium but not the boundary conditions will be satisfied.
According to the principle of .superposition the actual state of stress
for given boundary conditions can be expressed as a linear combination
of its eigenstates. But, as far as the eigenvalues )\ are concerned
these boundary conditions are irrelevant, as it is also true in planar
problems, where A = 3 for any loading combination.

Therefore, without loss of-generality, it will be assumed that all

body surfaces are formed by radial rays, and that the boundary conditions
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at the free surfaces in close vicinity of point O, Fig. (1.1), are:

-

body surface: ogq = 0y, = Ogg 0 atp =n/2 (1.10a)

crack plane: Ogp = Tpr = Tgg " 0 at ¢ = 0,2n (1.10b)

These boundary conditions written as surface tractions pr,pe, and

Py in the (6-¢)-plane take the form:

Pp = Spgly 8in 6 + Seip ~ 0 (1-11a)
Py = Sggiy Sin 6 + o0 = 0 (1.11b)
Py = S0 sin 8 + Sse%s 0 (1.11c)

No boundary conditions are specified at infinity, r -» «; only the
local problem of stress singularity at point O, r = 0, is considered,

and hence, a small domain about point O is required.

C.) Variational statement.

The differential equations (1.Ta-c) together with the boundary
conditions (1.lla-¢) may be combined to form the following variatiomal

statement in the (8-¢)-plane:

fl
- | =
”A(xrsr + X 6G + X¢6H)sin 8dody ds(pr‘SF + PG + p¢6H)ds 0

(1.12)
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in which s is the length of the boundary of the region of the (9,¢)-
plane; A is the area of such region; and §F,8G, and &H are arbitrary
continuous functions of § and ¢ which have piece-wise continuous
derivatives and satisfy all displacement boundary conditions, if any.
Conversely, from the fact that Eq. (1.2) must hold for any kinematically
admissible functions 8F,6G, and 8H it follows that Eqs. (l.7a-c) and
(1.1la-c) must be satisfied. Thus, the variational statement (1.12)
must be equivalent to Eqs. (1l.Ta-c) and (1.1lla-c).

The variational statement presented in Eq. (1.12), is analogous
to the three-dimensional statement one forms in order to obtain the
strain energy [18], except that integration with respect to r has
already been carried out in the unit sphere, since the r dependence can

be factored out, see Eqs. (1l.7a-c) and (1l.1lla-c).

D.) Variationmal equatiom.

The variational statement, Eq. (1.12) involves second derivates
of F,G, and H, which are contained in the expressions for xr,xe, and
X¢, Eqs. (1l.Ta-c). Since numerical techniques give rise to larger
error for higher order derivatives, it is necessary to transform
Eq. (1.12) to a form which involves no higher than first order de-
rivatives of F,G,H and of §F,4G,8H. Also, to be able to apply the
finite element method it is necessary that during this transformation
the boundary integral in Eq. (1.12) be included in the variational
equation; otherwise the natural boundary conditions would not be

satisfied when the finite element method is used.
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Indeed, a transformation by Green's integral theorem [18, page 279)

applied in the Cartesian (6-¢)-plane has been found, such that both
objectives are reached simultaneously. The formulation is given in

detail in Appendix A. The resulting variational equation is:
f fA(quaF + °F65Fe + ¢F¢6F s T 886+ °696Ge + ¢G¢5c s + §ybH

+ @Heéﬂe + ¢H¢5H¢)sm 9 dédg = 0 (1.13)

in which -6F, = 4F/34,..., 6H¢ = 36H/3¢ and the following notations are

made

@ = [Q(1-2) +2][(A+2)F + G, + G cot § + H ]

] sin 8 ¢

-~ 22\ +2);
- /1. ) .1 1 ) )
épe = (A-1)6+F; ‘!’F(b sin 0 lsing Fp + (A -1)EL
1
& - {(+2)[(» +2)F+Ge+c cot 6+ ST H¢] - 2(Gy +F)

- 2\F}cot 8 - 2(Fe -G) -x(>\+1)G-AFe;

1
(bce = QU(\ +2)F +G, +G cot B reer H¢} +2(Gy +F);




L G.);

® sin 6 Cp

G¢ = sin e

(He - Hcot§ +

1

G Jeot 8 + 2(——x - H)

&, = -[(Hy - H cot 8 +572

sin 3] ¢

A+ DR+ P F,ls

th = He - Hcot § + sii 3 G¢;

¢H¢ = sin 5 {al(x+2)F + Gy +G cot 8+ E'ixlx_e' H¢]
+ (s +Gcoth +F)}

si g b (1. 14)

where G?""’éh are not partial derivatives of some function &, and
are used only for notatiom.
Thus, the variational statement of the problem is: Functions F,
G, and H are the solution of the problem if and only if they satisfy
Eq. (1.13) for any kinematically admissible variation §F,8G, and &H.
Existance of the variational equation which contains no boundary
integral, Eq. (1.13), indicates that natural boundary conditionms,
(1.1la-c), will be automatically fulfilled when the finite element

method is used.
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E.) Coument.

Alternatively, it is possible to derive Eq. (1.13) from Eq. (1.12)
by means of Stokes theorem applied to a unit sphere. It has been
checked that this gives the same result. It has been also checked
that Eq. (1.13) can be transformed back to Eq. (1l.12) by means of
Gauss or Stokes theorems. For the sake of brevity these derivations

E are not given. Instead, an alternate and independent derivation of

the one just given is derived in the next sectiom.

1.5 Alternative Derivation of the Variational Equation

The basic variational equation, Eq. (1.15) can also be derived
from the principle of strain energy. The derivation is more direct
but involves certain steps which were difficult to foresee at the
early stages of this project without recourse to the derivation just

presented.

A.) Principle of minimum potential energy.
The total potential energy stored within a linear elastic body
of volume V and surface S, when no body forces or dynamic terms are

present, is:

e il a2

U= fv ¥ resin 6 drd8dg -fs('rtu + Ty + T¢w)ds (1.15)

where Tr’Te’T¢ are the surface tractions defined in Eq. (1.5), and § is

the strain energy density:




1 1
" w¢ + 2 Vv cot S) + 2[u

o} 1 2
5 {Q(ur‘+r vtz u +

. 1 .2 4
+( vg * 1 )2+(;—;1'—n—é- w¢+-:'-.vcot9+;u)]
1 1 2 1 1 1 2
+(v2-rv+;ue) +(;w6-?wc°te+rsinev¢)

+(;_s}F§u¢+w -;w)} (1.16)

i

in which, |
Q =2v/(1 - 2v) (1.17a)
= E/2(1 + v) (1.17b)

E is the Young's modulus and v the Poisson's ratio characterizing the
linear elastic material.

According to the principle of minimum potential energy, the state
of equilibrium is a state for which the first variation of the total

potential energy vanishes. Thus, consider the displacement variations

6u=¢u (1.18a)

] - Sve=ev (1.18b)




aw = g ; (1- 183) ’
where E is a variable parameter and U,v,w are any chosen displacement
distribution which are sufficiently smooth and satisfy all kinematic
boundary conditions. Then, the state of equilibrium is determined

by the first variation of U, Eq. (1.15):

30 . 2 .
3}y = e[ae]eso fv(wdbu + ¢ur6u? + ... + ¢w¢bw¢)r sin 6 drdedp

- drs(rrbu + Tgbv + T¢6w)ds =0 (1.19)

B.) An unorthodox step.

If Eqs. (1l.6a-c) were substituted directly into Eq. (1.19) 2
would factor out. However, the remaining expression would not be
able to satisfy the equations of equilibrium when Gauss theorem is
applied to Eq. (1.19). To circurwent this critical problem, consider
the terms ¢ur6ut, wvravr, and mwrbwf separately from Eq. (1.19).

These terms can be simplified by Gauss theorem as:

[ (b B, * b by, + 4, bu)av -

d d d d
f {37 (4, 89 - Bugs v, +37 (¥, 89 - Bvg ¥,
v T 4 T r
+ L (bW - sw g Jav (1.20)
dr wr dr wr




where d/dr is the total derivative with respect to r.

Applying the Gauss theorem to the sum of the first, third and

£ifth terms of Eq. (1.20) and placing them back into Eq. (1.19) gives

d ')
b0 = [ 100, = i b 000+ 1 g * ¥ B

+ (¥, - dir q,vr)bv + wveave + ¢v¢5,v¢

4
+ (ww dr er)bw * ¢w96w9 + ¢w¢6w¢}dv
+f {(y, Bu+y, bv+y, twn
] T r r

- T hut Te&v + T¢bw6ds =0 (1.21)

For the particular problems studied here, the surface integral of
Eq. (1.21) vanishes because of the boundary conditions conveyed by
these problems, i.e.:

1f the surface tractions, Eq. (1.5), are expanded, ome obtains

that on the free surfaces near point O [see Fig. (1.1) and Eqs. (1.10a-b)]:

which is not present on any surface formed by

i)

rays emanating from point O.

9

ii) Org = wvr = 0 on the body surface, § = 1/2., Org is not pre-
send on the crack plane ¢ = O.
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1i1) o,, = V¥, =O on the crack plane ¢ = O, but not present

® T
on the body surface § = 1/2.

iv) because of the free surface conditions the remaining terms

are also zero and because of (i-iii):

T, =0.% * ot¢n¢ =0 (1.22a)
Ty = Oggfy + ce¢n¢ =0 (1.22b)
'1‘¢ = 09¢ne + c¢¢n¢ =0 (1.22¢)

which are analogous to the boundary conditions given by Eq. (1l.1lla-c¢).
If the expressions (1.6a-c) are now substituted into Eq. (1.21)

one would obtain the same basic variational equation, Eq. (1.13),

after integration with respect tor is performed on the unit sphere

and transformed to the (6-¢)-plane.

C.) Llack of symmetry and non-existence of a minimum principle.

It is particularly noteworthy that the integrand of Eq. (1.13) or
Eq. (1.21) is non-symmetric, and so is the system of linear equations,
Eq. (1.12), which is Eq. (1.13) applied to finite elements, (kij # kji)'
This means that the variational equation cannot be written in the form
of a classical statiomary principle [18], &W = O (or minimum principle,
W = min.), which would yield Eq. (1.13). For an elastic material this

might seem surprising. However, a deeper analysis indicates that it

must be so.
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Assume that the integrand of Eq. (1.13) is symmetric with F,G, and ]
H. Then the discrete eigenvalue problem for A resulting from Eq. (1.13)
would have to be a symmetric matrix kij = kji’ Eq. (2.12). This
implies that all roots )\ would have to be real. But this cannot be

possible because the same variational equatiom, Eq. (1.13), must hold

also for plane strain problems with two material interfaces, whose
solution are known to exhibit oscillating singularities [22,23] for
which A is complex. Hence, Eq. (1.13) cannot be symmetric. This
contrasts with the analogous potential theory problem for which a
minimum variational principle in the (6-¢)-plane does exist [3], with
the consequence that in potential theory the eigenvalue )\ is always
real.

To prove that the variational equation Eq. (1.13) must be nomn-
' . symmetric, it is sufficient to show that it must be so in the special
case of plane elasticity. This can be done by dropping out the
integration over § and substituting 9 = /2 and then setting G = v = O
in Eq. (1.13). 1In that case, the most general quadratic functional

' involving F(¢),H(s),F'(¢) = 3F/3¢, and H'(p) = 3H/d¢ is:
i w’fl[é(AF2+AF'2+AHZ+AH'2)+ FF' + A FH
. o 21 2 3 4 A5 6

h + AFH' + AgF'H + AGF'H' + A, HH' Jdg (1.23)

The associated Euler equations [18] are:
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AF - ASF" +AH+ (AT-AB)H' - A9H" =0 (1.23a)

A:,)H - AH'+F - (AT-A8)F' - A9F" =0 (1.23t)

and the corresponding natural boundary conditions at ¢ = O or ¢ = ¢,

are

F' + A_F + AgH + AH' =0 (1.24a)
Ay 5 8 9

Ahn' + ATF + A9F' + AlOH =0 (1.241b)

The actual differential equations for F and H, as obtained by sub-
stituting u = rXF(¢) and w = rXH(¢) into the planar differential
equations of equilibrium in the polar coordinate system (r,p), given

by Karp and Karal [16], have the form
Cl(aoF + a,F" + aIH’) =0 (1.25a)
Cé(bol-l + bH" + blF') =0 (1.25b)

and the actual boundary cond!i ions

CB(CIF' + ceH) =90 (1.26a)

Cu(cjﬂ' + ch_F) =0 (1.26b)




where CI’CE’CB’ and cu are aribtrary non-zero comstants; and
a,5215303 bo’bl’be; °1’°2’°5’°h are certain g;Ven constants.

Equating the coefficients of all corresponding terms of Eqs. (1.23a-b)
and (1.24a-b) with Eqs. (1.25a-b) and (1.26a-b) one obtains a system of

14 linear algebraic equations for A ’AIO’ Cl""’ch' Unknowns

100
Al""’AIO can easily be found, which leaves a system of four linear
equations for Cl""’ch which are homogeneous. The determinant of this
equation system was found to equal \. Because )\ cannot be restricted
to equal zero, it follows that Cl""’c4 cannot be non-zero. Thus,
there is no way to make Eqs. (1.23a-b) and (1.2ka-b) equivalent to

Eqs. (1.25a-b) and (1.26a-b), which means that a variational functional

W does not exist for plane problems. So, it cannot exist for the

three~dimensional problem as well.

D.) Comment.

Indeed, the two derivations take somewhat different procedures
from those found from classical variational methods in linear elasticity.
But, it is noteworthy that both derivations complement each other in

the following manner:

a.) The boundary conditions in the (8-¢)-plane, Eqs. (1.1lla-c)
have to be included in the first derivation (see Appendix A), while
in the second they vanish because of the free stress surfaces, Eqs.
(1.22a-¢).

b.) In the first derivation the boundary conditiomns (mainly, ¢

Y

not being present on any surface when surface tractions are considered;




cre =0 onf = n/2, but not present on ¢ = O; Opg = O ong¢g = 0, but not . {

@
present on § = 1/2), allows the formation of the (§-¢)-plane, other-
wise, the radial component of the unit normal vector, n., on the
surfaces would be present in Eq. (1.1la-c). 1In the second derivation
they come out as a result of the application of Gauss theorem, but
vanish due to the reasons just presented.

c.) The first derivation makes use of the differential equations,
while the second starts from the total potential energy. Both pro-
cedures end with the same variational equation after some intuitive
ménipulations.

The lack of symmetry and the non-existance of a minimum principle

for the variational equation corresponds to the fact that both real
and complex eigenvalues must be associated with this variational
equation.

It must be stressed, however, that the entire present formulation
is contingent upon the assumption of the separated form of the eigen-

state (Eq. 1.6, page 10). There exists no proof that the eigenstate

ought to have this form, and that other eigenstates, possibly even not
separated ones, might exist and might be more severe, even though this

seems unlikely.
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CHAPTER I1

METHOD OF SOLUTION ON A
FINITE ELEMENT GRID

2.1 Introduction

The variational equation derived in Chapter I and given by Eq. (1.13)
has the tremendeous advantage that the stress boundary conditions are
automatically implied whenever a free surface is present. Therefore,
compared to a finite difference method where free surfaces would require
additional programming, the finite element method is selected to ap-
proach the problem. The program is then written in the Fortran IV
computer language.

The finite elements are chosen as simple four-node quadrilaterals.
The distribution functions for F,G, and H, Eq. (l.6a-c), are considered
bilinear in 8 and ¢. The coefficients of the stiffness amatrix,
Eq. (2.9), are calculated by the Gaussian numerical integration tech-
nique using nine integration points, [25].

The variational equation emerges as a generalized non-linear problem
for the eigenvalues. Various methods of numerical solution of this
type of problems have been discussed in detail in Ref. [3]. Method
B from page 230 of Ref. [3] has been selected to search for the root ).
A method of solution when A is complex has also been discussed in
Ref. [6] in connection with other problems. The root of smallest
value, or of smallest Re{)) in the case of complex roots, is of main

practical interest.

31
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An extrapolation technique based on the '"deferred approach to
the limit" [8] is proposed for the final value of root )\ as the
number of grid subdivisions goes to infinity.

The program is general and capable of handling various situationms,
such as intersections of crack plane and crack front edge of any
orientation, notches of any orientation and of any opening, etc. The
program will be also capable of handling cases when the exponent ) is
expected to be complex, such as intersections of crack edges with two-

material interfaces. This requires a conversion of the Fortran pro-

gram to complex arithmetic.

2.2 Finite Element Formulation

A.) Treatment of line singularities.

From the three-dimensional singularity point O, Fig. 1.1, page 11,
there usually emanates a stress singularity line, such as the crack
front edge shown as line 00' which coincides with the polar ray
® = 0. The displacements near this line usually behave as (rp)P [3,11)]
such that rp represents the distance from the ray 8 = O when 8 > O.
The exponent p will then represent the exponential behavior for the
displacement field near the singularity line. For the crack front
edge considered here, the values p = 0,%,1,5/2,..., are possible, and
for notch edges other values of p would apply.

From the theory of the finite element method for plane problems
it is known, for example, that the rate of convergence in the pre-
sence of square-root singularity is only O(h), while in its absence

the convergence is quadratic, O(hz), h being the element size [26].

- ’I
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It is conceivable that the fumctions F, G, and H, Eq. (1l.6a-c),

may exhibit gradient singularities at the point where the crack front
edge 00' (a singularity line) emanates from point O, Fig. 1l.1; then

p < 1. Such functions are not suitable for numerical calculations,
and if they are approximated numerically, their accuracy and conver-
gence are adversely affected by the presence of singularities. This
difficulty can be avoided by using singular finite elements near

the singularity line. A more convenient method has been proposed and
used with success in Ref. [3). 1In this method, the displacements in

the r,8, and ¢ directions are expressed as

u(r,8,8) = rr,P£(8,0) = r'pP£(8,0) (2. 1a) ;

|
v(r,8,0) = r"r,P8(8,0) = roPg(8,0) (2. 1b) f
w(r,0,0) = r"r,Ph(e,0) = r*oPn(,0) (2-1c)

in which, p is the exponent for the displacement field near the singu-
larity line; A = n+p; r, =I5 P is any chosen smooth continuous
function of § and ¢ which is non-zero everywhere except on the singu-
larity line 8 = O, and which represents the distance measured on a

unit sphere. Possible choices are p = 8, p = sin 8, etc. The second

e ek a4l aislemiea s e e e

suggestion will be used for numerical calculations, since p = sin 8

will then represent the exact distance from the ray not only for

8 » O, but everywhere in the domain. (Note, however, that p = sin @

cannot be used when the angle § = v is part of the domain and where |
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3 no line of singularity exists, i.e., at § = 7). Thus, it is comn-
% venient to introduce the notatioms:
|
; F(0,8) = o° £(9,0) (2.2a)
6(8,8) = o° £(8,9) (2.2b)
H(8,4) = p® h(6,0) (2.2¢)
oP = (sin 9)P (2.24) ',
3 1
If the field near the singularity line varies as p“ when p is set to ‘

%, then functions f,g, and h may be expected to be free of gradient
singularities. This would make the convergence rate quadratic,

O(ha), [26]. On the other hand, if components of types pl,po, and
possibly other components of different exponents were present in the !.
solution [9], the rate of convergence would not be quadratic, but

slower than quadratic [26].

e o

When several exponents p are p. sent, the lowest one must be used.

*
This is shown as follows. Consider that an exponent p , which differs 3
from the actual value of p, is used. Then, the displacement and stress ]

fields would behave as: 5

u, ~ " 8P F(8,0) (2.3a)
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o3y ~ 3u/36 ~ r"ep'ly(e,qs) (2.3b)

for the exact solution, and
* o«
ug ~ 6P F (8,0) (2.ka)
* L#

o34 ~ 3u/38 ~ 6P “1F (0,0) (2.41)

for the numerical solution.
Equating the two critical expressions, for the stresses °ij’

one obtains:

. *

F (8,0) = 8PP F(8,0) (2.5)

»
where the function F(9,p) is bounded. If one chooses p > p, function
*®
F (8,4) can obviously become unbounded as § - O; and it cannot be
adequately represented numerically. Thus,

*
P <p (2.6)

is necessary. The best choice would naturally be to make p* equal to
the lowest expoment p present.

Under these considerations, there is still the restriction that
along the crack front edge, § » O, the displacement field must exhibit

the behavior
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8%, such that q > 0 (2.7)

for the strain emergy to remain bounded. Note that q is not the

exponent for the singularity functionm p.

B.) Displacement distribution in an element.

Choosing a finite element grid in the (8-¢)-plane, Fig. 2.1,
the unknown functions F,G, and H may be represented within each finite

element, Fig. 2.1, in the form

L]

M
F(8,4) =) XL, Fl = oPl(g,g) (2.8a)
i=1

M
6(8,6) =) x,6°, of =oP%(8,0) (2.3b)

i=1

M

H(0,0) ’Z XiHi , H

i=1

= oPni(e,0) (2.8¢)

in which X,, 1 = 1,2,...,M, are the nodal values of £(9,0), g(8,6) and
h(8,¢); and fi(9,¢), 81(6,¢) and hi(8,¢) are given distribution functions
within the finite elements, usually chosen as polynomials in 8 and ¢
(251].

Denoting (em,¢m) as the coordinates of the mth node, the dis-

tribution functions must be chosen such that
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i 1, i=3m2 2.58)
LU I a2 (2-9a
\. 2
Ye,.0.) g bt (2.9b)
4 Ny = . .
mom 0, i# 3m-1
(.
s (1, t=3n ,
B(6,8,) = 10 '+ 4 3 (2.9¢)

in order to accomodate three degrees of freedom at each node
m = 1,2,...,M, [25]-
The variations of functions F,G, and H and their respective

derivations may now be expressed as

M M M
A ¥ - i - j ,
F =) F axj, 8F -Z Fg exj, §F¢ EFq, axj (2.10a) ]
=t 3= 3=t
= j = . j = j f
56 =), olox, 86, =) colex,, be, =) o dx, (2. 10b)
i=1 j=1 j=1
- J - h| =\ 3
8H ) H bxj, by =, Hy axj, 6H¢ / H¢ axj (2. 10c)

i=1 j=1 i=1




C.) ‘ariational equation in an element.

Su’ «:ituting Eqs. (2.6a-c) and (2.8a-c) in to Eq. (1.14), it
follows that

& -{@ix & =)l x & =0 @ x (2.11)
°F F "1 Fp Fg 027772 PR L% X ’
i i i

in which

i - pei Py i, P i, pi of i
e = [Q(1-N) +2][(A +2)p " + (p )g8 +pgy +p8 °°te+sineh¢]
- 2x(n +2)pPst, @; = e
8
1,1 Pl Py oL, P i, p i of i,
¢h¢ sin 8 {le(x +2)p"t" + (p )98 +0 8e'+p g cot § + sin 0 h¢J
P . .
i i i
+ 2[5 by +o'8 cot 8 + oPE]] (2.12)
Finally, substitution of Eqs. (2.7a-c) and (2.11) into variational
equation (1.13) yields a discrete variational equation of the form
M M
zz A
() kijxj)axi=o (2.13)

jal i=1

in which kij are stiffness coefficients expressed as follows
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h| i b b1 i3 L3 i
_U{@FF +d: F +¢F¢r¢+d> G +-ceGe <I>G¢¢+<I>H
+o u + e B} sin 6 dedg (2. 14)
LA -
Note that the stiffness matrix [kij] is non-symmetric; i.e., #k

in general. The variational equation (2.12) must hold for any choice

of axi (i =1,...,M), and this requires that

M
S

=1

ixj (i =1,...,M). (2.15)

[

This is a system of M linear homogeneous algebraic equations, re-

presenting an eigenvalue problem. All stiffness coefficients kij’ not
just the diagonal ones, depend on singularity exponent A, and so the

eigenvalue problem is of the generalized type. Furthermore, it is
easy to see that kij are polynomials in A, as well as in Poisson ratio

v (when multiplied by 1-2v);

kij = kij(k,v)- (2.16)

D.) Integration for the stiffness matrix.

The finite elements are chosen as four-node quadrilaterals in the

(6~¢)-plane. Three degrees of freedom are placed at each node in order

to

B T T T i O g et oo
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accomodate the displacement field (£f,g,h). The basic distribution
shape function fi(e,¢), gi(9,¢), and hi(e,¢) on the original rectangle
are considered as bilinear in § and ¢, i.e., a + b8 + cp + d6¢*.
Following the conventional methods found in finite element tech-
niques [25,27],the finite element stiffness matrix is obtained by
mapping a general quadrilateral, Fig. (2-1), into a unit square,

Fig. (2.2), given by the transformation

I
to

—_
3

-/

to
o

e)? - ‘ 2 (2.17)
o] 7 |

- % ,

where

B = (31’32’33’Bh) (2.18a)
B, = %.:(1+e*e:)<1+¢*¢;), i=%k1,m,n (2. 18b)
T =(8,,8,0.,8)7 (2.18¢)
~ K>"L>"M’"N
F = (6ys@s sBysbro) - (2.184)
I 7 \OgsPr 0Py

* %
in which the subscript T denotes a transpose; (91’¢1> are the cormers
(£ 1,4+ 1) of the unit square numbered clockwise beginning at (-1,-1);

(91,¢I) are the corresponding corner coordinates of the quadrilateral

*
In retrospect, it appears that much more accurate results could have
been obtained with higher-order finite elements.

g

e it ) e
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Fig. 2.1: Finite element grid
in the (9=-g)-plane.

(-1,-1), (-1,1)
o
| !
- -
o* f Fig. 2.2: Unit square, obtained
: ( AJ by mapping a genmeral
(1,-1) [ (1,1) element from Fig. 2.1,

' using Eq. (2.17).
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element; (8‘,¢=) are the coordinates of a general point within the
unit square; and (8,p) are the coordinates of the corresponding point
on the quadrilateral element. i

Carrying out the foregoing transformation of variables § and ¢ ‘
into 9‘ and ¢*, the stiffness coefficients given by Eq. (2.1%) may be

expressed in the well-known manner [25]:

1 .1 .
g = IIA ¥(8,0)d0dp = | 1 i 1w*(e*,qs')de g (2.19)

in which Y(8,¢) is the integrand of Eq. (2.14); and where

v (68 ,0) = 3] ¥(6 ,0) (2.20a)

[ . N
38/, 2¢/28 (2.20b)

: b *®
%%/, e/w
J being the Jacobian of the transformation given in Eq. (2.16).
The integration of the second term in Eq. (2.18) is carried out
numerically by the Gaussian quadrature formula [25], over nine points

a, of weights Hi:

3 3
o < *=
k = N
ij / L Hqu ¥ (ap,aq) (2.21)
p=l q=1
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in which 3; = -a; = 0. 77459666924 1493; a, = 0; By =8 = 5/9;
B, = 8/9.

A (12 x 12) stiffness matrix is thus obtained for all elements,
which are then incorporated element by element into the final global
stiffness matrix kij' A detailed Fortran program is given in

Appendix B.

E.) Comment.

The treatment of line singularities described in Section 2.2A
may be thought of in a different light. The representation of the
displacements with the approximate form [u,v,w] = rxpp[f(8,¢),g(3,¢),
h(8,p], Eqs. (2.la-c) can be expanded further in the series

@

[, v,9] =) oPL£(8,0),8(8,0) ,h(8,0)]
p=0,%,1,...

where £(6,0), 8(6,6), h(68,8) and A can be obtained for each value of
P, for a properly chosen function p (such as p = sin §). Thus, form-
ing a more general represention of the displacement field which is
easily accessible to numerical methods for its solution as shown in
Section 2.2 B-D. Indeed, the above equation is not the most general
expression because there exists the possibility of some other re-
presentation for the displacement which might be intuitively obtained.
However complicated, general, or exact series representation one may

choose, the most interesting and practical term in the proposed series

is that whose stress field dominates over all other possible terms
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present in the complete solution. Since displacements behave like

A A=1

r" and stresses like r as r= 0, the smallest value for A must be

sought.

2.3 Methods for the Eigenvalue Search

The problem is to f£ind the smallest eigenvalue ), such that
Re(A) > -%. Again, )\ is limited to Re(\) > -3 for the strain energy
to be bounded near the point of singularity. Various methods might
be available for the eigenvalue search commected with Eq. (2.14)
[3,28]. 1Two methods are presented, but only the most efficient one is

chosen to solve the problem.

A.) Quadratic polynomial on the eigenvalue problem.
It is interesting to note that the stiffness coefficients of
kij(x), EqQ. (2.13) are quadratic polynomials in A\, see Eq. (2.11).

Hence, the matrix kij(x) may be written as

[k,. ] =k =a+Dbk +¢c) (2.22)
where a, b, and ¢ are real square matrices independent of A and of size
(M x M), M being the number of nodes. So, Eq. (2.14), k X = O, takes
the form:

aX+Abx+2 " cx=0 (2.23)

where X is the column matrix of Xi‘ This expression is 2 nonsymmetric

quadratic eigenvalue problem on A
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In an iterative eigenvalue search,k,, would have to be repeatedly

i}
evaluated for various A-values. Obviously, Eq. (2.22) allows reduction
in the number of computations needed to obtain kij’ since it sufficies
to determine three matrices of sizes (M x M) independent of )\, and

then evaluate k given A till Eg. (2.14) is satisfied.

Furthermore, it is useful to observe that complex eigenvalues of

Eq. (2.14) or (2.22) can occur only in conjugate pairs, because

KX =0 X =) X (2.24)

E@E =0 (2.25)

where a superposed bar denotes a complex conjugate.

B.) Conversion to non-homogeneous system of equations. _
The method for the eigenvalue search described in this section

has been used with success in connection with other problems which lead

B T A

to the equations of the type of Eq. (2.14), for the real case in
Ref. [3,4] and for the complex case [6]. The method used herein will
be explained in complex arithmetic which can easily be converted to
real arithmetic by ignoring all the imaginary components.

Eq. (2.14) represents a large system of M homogeneous linear
algebraic equations for the values Xj which belong to the nodes

j=1,2,... M
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M
Z,l kgyOav)X; =0, 1= 1,2, (2-26)
i=

For a given value of Poisson's ratio y, the root ) and the correspond-
ing eigenvector Xn(n =1,2,...,M), is evaluated by the following
technique:

First, the matrix kij(x,v) is calculated for one chosen value of
A=t iXI, where A, = Re()\) .and Ap = Im(\). Then, the equation
belonging to one of the unknowns X , e.g., for the nth term X, at the
surface node, is deleted from the matrix kij’ and stored separately.
This equation is then replaced by the equation X = (1,1) which makes
the equation system non-homogeneous.

This matrix, for the new system of equations, is non-singular,
because \ is a simple root when Im(\) # O. Thus, all Xn,(n = 1,2,...,M)
can be solved by converting standard library subroutines for banded
real matrices to complex arithmetic, see Appendix C.- In the case of
real roots, the new matrix is normally non-singular.

Once the unknowns, Xn’ are solved, the right-hand side, ¢_, of

m’
the original m-th equation is evaluated. The quantity Qm may be re-

garded as a function of AR and XI’ i.e.:

M
z Kny®y = Qulhgsty) (2.27)
p .
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After a second quantity of Qm is evaluated for another value of ), ,
chosen at the beginning of this procedure, the iterative "regula

falsi" method is applied to XR and XI separately, in order to find

the value of A such that Q will be zero, i.e., Re(Q ) = Im(Qm) = 0,

thus, satisfying Eq. (2.14%). Computatiomally, Eq. (2.1k4) will

obviously not be satisfied exactly. 1In the program the iterative é

"regula falsi' method is used until the difference of two cousecutive

values of A is of order 0(10-5), and to whose last value yielded

lo| = o(107)",
Accuracy and co§vergence can be improved when the m-th equation ‘

is chosen such chatz Ikmjl is the largest of allz (kij( ,i= 1,...,M,

J
[6]. The search for this value was not necessary here since all of

them were found to be of the same order. Nonetheless, the convergence

of the iteration method is sometimes quite slow. To obtain a good
5 initial guess, A must be scanned in small steps, usually of about 0.05

and 0.005 for the real and imaginary parts of )\, respectively.

Fig. (3.6) gives an indication of the sharply varying slope of Qm v.S.
A for an example whose solution is real. Thus, much care is required
to avoid missing the smallest root and to keep the computational time
to a minimum.

The root search subroutine can be generalized further for various

cases which will be used in later chapters. Note that the search

for root )\ may be geometrically interpreted as the intersection of the
line of solution for a constant number of finite elements, N, with

the vertical line vy = constant, see Eq. (2.15) and Fig. (3.5). For

* -
The difference in initial guesses for A is in the ordsr 0(h 2) and their
corresponding Qm values usually range in the order 0(h“) to O(ha).




regions when this curve, \ v.s. v, turns sharply upwards (or downwards), .
the subroutine converges poorly or not at all, i.e., either the inter-
sections occur at very small angles or no intersection seems to exist.
To circumvent this difficulty, Eq. (2. 16) may be considered as an
eigenvalue problem for v at a fixed ). Then, the solution represents
an intersection of the line of contant N with the horizontal line
A = constant.

Similarly, when the problem is to find orientation angles B and y
for their crack front edges and planes, or notches with opening ¢ and
orientation 8 and y, for which the values of A and v are desired, as

fixed then kij will be a function of these angles:

key = kij(}\,v; a,8,y) (2.28)
and Eq. (2.27) may be considered as an eigenvalue problem for q,8,
and vy.

In the case of complex roots the search method is more complicated
than that for the real roots. First, one must scan a region of com-
plex A = (XR,XI). At each point the quantity [Re(Qm)2 + Im(Qm)Z]-1
is computed and a plot is constructed. Once a peak is noticed in the
plot, then the "regula falsi" method is performed in the following
wmanner :

Two values for kR’ chosen inside the region of the peak, are

fixed. For each of the two XR’ XI is iterated with respect

to Im(Q,) and when it converges Re(Q;) is stored. The third

XR value is iterated with respect to the two previous Re(Qy).
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Again, it is fixed and XI is iterated untill XI converges.
And so on. Once XR has converged, a f£inal iteration is
performed on KI’ Thus, a complex root is approximately

computed.

C.) Eigenvalue convergence.

Interesting results can be obtained when the convergence rate of
the numerical eigenvalues, computed for different number of grid sub-
divisions, is studied carefully. Indeed, convergence studies can at
times be questionable, especially when sophisticated manipulations
are needed to obtain numerical values. However, its use is justified
when a convergence method constantly agrees with exact, or nearly
exact, solutions to the same problem based on a completely independent
approach.

For example, it is well known that the ordinary finite element
method exhibits quadratic convergence (or it has an error of the order
O(he)), provided that there are no singularities within the domain
[26]. That is, functions f, g, and h and their gradients are non-
singular, p = %, see Section (II-2). So, the convergence of the
eigenvalue )\ should also be quadratic. When singularities are pre-
sent, e.g., p = O, then the convergence is less than quadratic and
the error E is of the order O(h™), where h is the size of the element
and m the convergence rate. Then, noting that (~ denoting proportionality)

W2 ~ 1/N (2.29)

and




where N is the number of finite elements and k a constant, possibly

dependent on O

Q = 2v/(1-2v) (2.31)

These relations should hold accurately when N is sufficiently large.

Hence,

E=Xy =2~ k/N (2.32)

where, XN is the computed value using N finite elements and Xe the

exact solution. Then, Eq. (2.30) can be written as

log E = log k + m log /N (2.33)

If a quadratic convergence is present, expression (2.31) must
exhibit a straight line of slope m = 2 for sufficiently large N when
log E is plotted versus log /N. Otherwise, [m| < 2. This observation
can be used to advantage in extrapolating the convergence pattern

and estimating the results for N - =, or h » O.

D.) An extrapolation technique.

Many extrapolation techniques exist in the literature, most

referring to particular problems [23,24] based on the h™ extrapolation.

rmaa aa o et 4 cmmi o aaian
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This idea was first suggested by Richardson [29] and a fuller treat-
ment was later given by Richardson and Grant [8]. The latter deviced
an extrapolation formula, better kmown as the "deferred approach to
the limit", in which h represents the average size of the interval
divisions. This method may be extended here to suit the problems
in question.

If A, is the solution at the end of an interval obtained by using
hs= h1 ~ IA/N1 and la is the solution at the end of the same interval

using the same formula but with h = h2 ~ 1[/N2, the extrapolation

m m
JMbs - Aghy (2.34)

extrap. h; - :
: 1

A

gives an improved approximation over the linear extrapolation (m = 1)

provided that:

1.) the total round-off error is negligible
ii.) both h are small enough for the error to be proportional
to h”, i.e. E = O(h™).
When N is too large, there i{s a dangecs that round-off error will build-
up to substantial proportions. Thus far, this error has not yet been
detected, even with largest system of equations used here: 975 simultane-
ous equations belonging to 288 elements. Hence, condition (i.) may be

considered to hold for the large computers available today.

P p——————

ey




52

The convergence rate m, in conditiom (1i.) is a seldomly knowm

value, yet, it is of most importance for extrapolation studies. Then,

i m A A o T R T g0 s

the question arises for its value which would apply to these problems.

Its assessment will now be analyzed.
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Extending the Richardson's " extrapolation formula, Eq. (2.32),
which is based on the two conditions mentioned earlier, the convergence

pattern can be exploited further to greatly improve the accuracy of

T e s A e b

the results with the additional provision that the grids for various
subdivisions are all similar and generated according to the same rule
imposed at the beginning of the problem. Let XN be the root obtained
when N number of finite elements is used. The following extrapolation
technique is proposed. j

Plot the values of root XN versus IOOO/Nn/2

for various chosen
values of n. The convergence rate m = n which gives the best straight-
line fit, as indicated by the least sum of absolute deviatioms, is
selected. Then, a regression line is passed to obtain the extra-
polated value as N+ =, or h » O.

Obviously, this technique must work if the assumption that the

l error is of the order O(h™) = O(N-m/g) holds. Note that all eigenvalues

XN are included, not just two, as in Eq. (2.32). Hence, the value m,

AT ———————E I ———

obtained in such manner, is the effective convergence rate.
This technique can be interpreted in the following manmer:

Let ki,i = 1,2,...,K, be the roots obtained by using the finite

element method, e.g., N = 128,72,32,18; then { = 1,2,3,4. Let




X, = b} = 1000/5%/2 (2.35)
be the X-coordiﬁate of the ki-rooc for a convergence rate n, where n
can vary continuously. Construct a rectangular coordinate system
X\ -x, as shown in Fig. 3.4. The data points in Fig. 3.4 are from
a typical example to be studied in the next chapter.

The best-fit straight-line A = a + bx through the data points

is determined by the minimum value of the sum of squares of the

diviations &i:

K K
s(m) =) (6% =) [y - a(n) - b(a)X,(n)] (2.36)
i=1 i=1

where a = a(n) and b = b(n) are the coefficients of the straight-line.
Henceforth, the subscript i will be dropped because the summations are
understood to be over all K data points. For S to be a minimum for

a particular n-value:

38 _ 38
%a -3 0 (2.37)

which yields

K in)‘i - 2"1 Z"i

b= = (2.38a)
q x21 A in

|
%
|
b
3




T IORVER IS (2.38b)

The optimum value of n, for which S(n) is a total minimum is obtained

by
g% S(n) =0, atn=m (2.39)

from which m, the effective convergence rate, is intuitively chosen.

Clearly, the extrapolated value will be a(m). The proofs that:
E = o™ = 5% S(n) =0, at n = m (2.40)
or vice versa

3 m
>a S(n) =0, atn=m = E =0(h ) (2.41)

are beyond the scope of this work, if such theorem does indeed exist.
Unfortunately, the literature on this technique is not available.
Its servicability can only be supported if it concurs with known

golutions, as it will be shown to be true in the succeeding chapter.

E.) Comment.
The application or a regular finite element method to the vari-
ational equation, Eq. (1l.1k4), is straight-forward, with the only im-

plication being computational errors. The technique used to search




for the smallest complex eigenvalue has been proved to work success-

fully in [6]. An extrapolation technique based on convergence

patterns is proposed. A rigorous proof that such technique must work

is not given.
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CHAPTER III1

NUMERICAL SOLUTIONS

3.1 Introduction

The finite element method developed on the (6-¢)-plane and
applied to the variational equation derived onthe unit sphere is of
general applicability. This method can now be used to obtain the
solution for a crack whose front edge and plane inclination angles are
of arbitrary values, see Fig. 3.18, page 103; a notch of arbitrary
opening and orientation, see Fig. 3.26, page 101, and for the solution
of a crack or notch with two dissimilar materials.

The analytical solution for a Mode 1 crack whose front edge and
plane are normal to the surface, see Fig. 3.1, page 68, has been ob-
tained by Benthem [9] and Kawai, Fugitaui, and Kumagai [10]. Signi-
ficant advances, which led to highly accurate analytical solutionms,
have recently been made in potential theory problems by Morrison and

lewis [11] and by Keer and Parihar [12]. The former authors succeeded

in obtaining a tractable differential equation by virtue of using

special coordinates (conical coordinates) suited for the particular
problem of charge singularities. Keer and Parihar's method, utilizing

spherical coordinates, appears to have broadef application and involves

the use of Green's functions to formulate the problem in terms of a
singular integral. The crucial step is to differentiate this integral
equation to get rid of a constant right-hand side and obtain an eigen-

value problem, which is then solved numerically by Erdogan and Gupta's )




method, and thus obtaining the solution for crack corner in an

infinite elastic space in Mode I opening; also obtained numerically by
Bazant [3], who used finite difference methods as an approach to the
problem. Parihar and Keer have extended their very effective,

original and elegant method to the same problem for Modes II and III
singularities which is irreducible to potential theory [14a]. They have
also obtained the solution for shear on a rigid corner stamp on a semi-
infinite elastic body for which the solution is complex [14b]. These
solutions and those of plane problems provide valuable check cases

for the accuracy and correctness of the present method. In a more
recent private communication,” Benthem has obtained numerical solutionms
not yet published of an arbitrary crack using finite difference methods
applied to the diiferéntial equations of equilibrium. His solutions
agree reasonably well with the results to be presented.

In the progress of this work certain limitations to the finite
element method have been found. The obvious one is that for which the
Poisson ratio is close to 0.5 and the term Q = 2v/1-2y increases with-
out bounds, and for which it was noted that Modes II and III are more
susceptible than Mode I. Also, when the angle of inclination 8 for the
crack front edge is cloce to O or T, see Figs. 3.10 and 3.1l1, page 84,
numerical inaccuracies were seen; because when these domains are mapped
in the (6-¢)-plane they are distorted considerably and one would need
to increase the number of finite elements until the domains are rea-
sonably represented. A final limitation is that whenever the eigen-

value is real and larger than unity in the interation routine, A will

*april, 1978, Delft, Netherlands
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converge to exactly unity, the reason being that rotational effects f

will dominate, i.e., A = 1.

3.2 Check Cases

As a first step, the program is checked for its correctness and
accuracy. Various simple cases of known solution, usually given in
terms of displacements in the Cartesian coordinate system, are trans-
formed to the spherical coordinate system [7, page 37]. This is dome
by letting the y-axis coincide with the crack plane ¢ = O, 11 2t 8 = n/2;
the z-axis coincide with the crack front edge, 6 = O; and the x-axis
being perpendicular to both, y- and z-axis, i.e., at ¢ = + ﬂ/2,

8 = /2, see Fig. (3.1) page 68. Then, the following transformation

is allowed:

- - S -
( u I sin 8 sin ¢ sin 8 cos ¢ cos 6 | u, ;
! i 1 :
Yy 7 =% cos B sin ¢ cos 8 cos ¢ -sin Gi YUy ’ (3.1) :
' ! q t

w L cos -sin ¢ 0 : Cu b
- . ¢ J L z |

where (ux’“y’uz) is the Cartesian displacement field of the known
solution.
The spherical displacement field, (u,v,w), in the domain 0 £ 6 =

m/2, 0 £ ¢ £ 11 is checked for i) continuity, ii) existence of at most

first order derivatives, and iii) boundary condition requirements.
Then, the field is substituted into the program by calculating

the displacements at each nodal point, i.e., obtaining X,, Eq. (2.14).




The stiffness matrix k

is subsequently computed; and Eq. (2.14) must
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be approximately satisfied. As an error indicator, the right-~hand
sides for all i were compared to the sum of their absolute terms as

indicated by the condition

M

| Zkij _1|/L kg g%,| < 10
i=1

N (3.2)

at all nodal points i, i = 1,2,...,M; for a mesh of only 32 elements.
The elementary solutions for the various special cases considered here
were first analyzed for their dependence on ) and pp, Egs. (2.1la-c),

in order to obtain the A and p values.

A.) Rigid body rotations.
The three body rotations allowed imply that X = 1 and p = O. For

example, the rotation about the z-axis, 0 = 0, implies that

u=vy =0, w=rsin$8 > (3.3)

for which \ = 1, p = 0, H(8,4) = sin 6; and F(8,4) = G(8,4) = O. Note
that it is also possible to have X = 1, p = 1, and h(8,8) = 1 for this
particular example. Table 3.1 shows the print-out of Eqs. (2.14) and

(3.2) using Eq. (3.3).

B.) Homogeneous strain field.

The only homogeneous stress field that will satisfy the free

surface conditions is that which belongs to gy = 1 (or constant), i.e.
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in the y~axis direction (§ = /2, ¢ = 0). Ignoring rigid body dis-

placements already considered im Section A, this field yields:

(“x:uy:uz) - ('VX:Y:'VZ) (3"")

Then, after using the transformation forumla, Eq. (3.2), the

spherical displacement field 1is:

u(r,8,p) = r{sinee(cosada- v sin2¢) -V cosze] (3.5a)
2 2

v(r,8,¢) = r{sin 6 cos §(cO8 ¢ - y sin o +v)) (3.5b)

w(r,0,¢) = r[-sin § sin ¢ cos ¢(1 + v)] (3.5¢)

for which A = 1 and p = 0. The functions F(8,4), G(8,4) and B(8,9)
would then be the expressions inside the brackets of u,v, and v, re-

spectively. 1If Poisson's ratioy =0, then A = 1 and P = 1 can be

considered, and

£(9,0) = 8in § cosaq) (3.6a)
8(8,0) = cos 9 cos2¢ (3.6b)
h(8,9) = -ein ¢ cos ¢ (3.6c)
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would apply. Table 3.2 shows the.print-out of Eqs. (2.14) and (3.2)

using Egqs. (3.6a-c¢).

C.) Plane-strain solutioms.

The solutions for near-tip plane-strain fields may be found in
references [ ] for opening I mode, shear mode II, and antiplane
mode III. Obviously the antiplane mode field cannot satisfy all stress
boundary conditions at the surface § = 1/2, or the nodes which belong
to the body surface in Eq. (2.14). 1In this case only the fulfillment
of the equilibrium equations for the interior nodes was checked. As

an example, the displacement field for mode I opening is [12]:

u =G/t [sin 8(A + B)] (3.7a)
v = &/t [cos 8(A + B)] (3.70)
w = C/r [A-B] (3.7¢)

vhere C = -R/2 (1+v1)/E1; ! = E/(l-va); vh = v/ (1)

A= [2(lﬂv1) - cosza] sin g sin ¢
(3.8)

B=1[1- avl + sin?a] cos ¢ sin ¢

a= (¢ -m/2
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Then, \ =% and p = O. These values also hold for the two remaining

modes and need not be discussed further. A print-out of Egs. (2.1k)

and (3.2) is shown in Table 3.3 using Eqs. (3.Ta-b) and (3.8).

—

D.) Checks on smaller domains.

For the sake of accuracy for the method, cases B and C were
rerun for domains of small notches, but still containing 32 elements.
Table 3.4 shows the print-out for the example given in Section C for
a notch of boundaries 0 < 0 < 1/16, 151/16 < ¢ € 7. As expected,
the accuracy increases inside the domain but not at the boundaries,

since the boundaries of the actual problem are not those of a notch.

E.) Comment.

Note that, if Eq. (2.14) is satisfied computationally, i.e.,
its righthand sides are small, then alternatively, the variational
equation, Eq. (1.13), must be satisfied exactly. In all check cases
studied above substitution of Eqs. (3.7a-c), (3.5a-¢), and (3.3) into

Eq. (1.13) yielded zero after long hand algebraic manipulations

3.3 Crack Plane and Front Edge Normal to Surface

The finite element computer program Jerived in Chapter II and
outlined in Appendix B is now applied. The first problem is that of
a crack whose plane and front edge are normal to the halfspace, as
depicted in Fig. 3.1. Recently, Benthem [9] and Rawai, Fujitani, and
Kumagai [10,30] presented analytical solutions for this problem but

only for Mode I opening. A comparison of their results with the ones

obtained in this chapter is made.
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A.) Symmetric opening, Mode. I p=4%

To analyze the field near the terminal point O, Fig. 3.1, in
Mode I opening for the problem just presented it is sufficient to
consider only half the domain, because there exists symmetry with
respect to ¢ = 1v. The new domain will continue to be rectangular in
the (6-¢)-plane with boundaries 0 < § < /2, 0 < ¢ < 11, Fig. 3.2, or,
as indicated by the domain enclosed by the slashed lines in Fig. 3.1.
The stress boundary conditions on the crack surface (¢ =0) and on the
half-space surface (0 =1/2) are automatically satisfied by the finite
element method. The boundary conditions of § =0 (the pole, top side
of the (6-¢)-domain in Fig. 3.2), are irrelevant and none have been
imposed.

The boundary conditions on the symmetry plane (¢ =) must properly
reflect the symmetries of displacements and stresses with respect to
@ =1m. Therefore, for the symmetric crack (Mode I) opening, one must
impose for all nodes at ¢ =11 the condition w = O, i.e., h = O, Eqs. (l.6¢)
and (2.1c). The symmetry conditions for stresses, namely o‘¢r = c¢e =0,
will be also be automatically satisfied by the finite element method as
natural boundary conditions. Thus, these considerations ensure a
statically determinate support for the body and at the same time properly
reflect the symmetry properties.

From the work previously done on potential-related problems [3], it
was expected that the displacement field should exhibit a behavior of

the form




o

Fig. 3.1: orthogonal crack. Spherical coordinate
system at termination of crack front edge
00'at body surface, pointO. (The unit
sphere is shown only to visualize the co-

ordinate; the body is semi-infinite).

Fig. 3.2: Finite element grids used for orthogonal
crack. Domain 0'ACO' from Fig. 3.1
visualized in the (8-¢)-plane.
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v/N 18 32 T2 128 Benthem [9]
0.0 0.565263 0.537891  0.517198  0.50973  0.50
0.15 0.64884) 0.611861  0.582320  0.570591 0.516k4
0.30 0.7567T2 0. 704681 0.662787 0.645832 0.5477
0.4o no conver. 0.826392 0.756209 0.7217h4S 0.5868
A/N 18 32 T2 128 i
0.905 0.390605 0.423676 0.453383 0.4667%
i
Table 3.5: Numerical results. Eigenvalues for

orthogonal crack using N finite elements;
Mode I, p = 2.
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u(r,0,¢) = rxsinpe F (9,0) (3.8b)

In Ref. [3], p was suitably takem as p = 2. This choice was motivated
by the fact that the term pp, Eq. (3.86) is dominant at finite r and as
§-0. Unfortunately, the literature related to the method of solution
used here to treat elasticity problems is non-existent. Therefore,
expecting similar behaviors, p was chosen to be p = % as a first at-
tempt to solve the problem.

Symmetric opening is acquired in the program by forcing any of the
nodes belonging to the crack surface (¢ = O) in the ¢-direction.

Table 3.5 gives the numerical results of A for various values of
Poisson's ratio v. For values of v which exceed O.L, the root search
surbroutine converged very poorly, or not at all. For these cases, A
was fixed and v was considered the root, as explained in Section 2.3 B.
Some resuits are given at the bottom of Table 3.5. However, when v
becomes very close to 0.5, the present formulation breaks down, because
the value Q = 2/(1 - 2y), Eq. (1.8), increases without bounds. A
special program would have to be written for v close to 0.5 and for
incompressible materials, v = 0.5.

Note that for the case of Poison'’s ratioy = O the computed value
of the root for the finest grid used (128 elements, 459 simultaneous
equations), was 0.50973. The exact solution s known to be 0.5 [9].
Thus, the computed value is still within 1.9% error. Closer estimates
for the exact solution with these values, Table 3.5, can be gotten

with the extrapolation technique explained in Section 2-C. Eq. (2.33)




Tl

should hold for m = -2, since p = % will not introduce gradient singu- {
larity near 8 - O, [26). The plot of log E versus log /N, Eq. (2.33),
is shown in Fig. 3.3 for the case y =0, where the exact solution is
known, Ae = 0.5. 1Indeed, the plot is a straight line with a slope
indicating m = -2.0. Thus, for v = O, the present formulation, p = %,
seems to follow a systematic pattern of quadratic convergence.

This observation can be used to advantage in extrapolating the
convergence pattern and estimating the results for N » «, h » 0; even
for v > 0, where no error analysis can be made, since no exact solution

is available. Thus, a plot of A versus l000/N, i.e., m =2, is

constructed in Fig. 3.4. Again, for quadratic convergence these plots
should be straight lines for sufficiently large N. According to
Fig. 3.4 this seems indeed to be true. Therefore, regrassion lines
(straight lines) are extended to obtain estimates of the values as
N - =, {i.e., estimates of the exact solution, as shown in Fig. 3.k.
The extrapolated values, along with the numerical results of Table 3.4,
are shown in Fig. 3.5 and are compared with Benthem's solution [9]. ;
Note, however, that for the case v = 0, the extrapolation point, N - o,
falls on 0.5 + 0.002, X = 0.5 being the exact solutionm.

The fact that estimates, N - =, significantly deviate from
Benthem's results [9], as shown in Fig. 3.5, ean be attributed to the
case p = &: 1i.) The solution presents eigenvalues which are in the order
of those obtained by Benthem, but unfortunately for the case p = %, the

exact or numerical solution is unlikely to be available for comparison

purposes. 1i.) 1In light of the results to be presented in the sub-

sequent section, this solution is correct within 1%. {ii.) From (ii.),




log (3-%)

-.2F
O Numerical results for a
grid of N finite e;ements
-1.4F V= 0
-%)=const.-m log IN
) \ .
-6 . m=
Qquadratic
convergence
-[.a o
-2or ‘ l B N =128
-0.6 -0.7 -0.8 -0.9 -1.0
log /N
Fig. 3.3: Determination of the rate of convergence

with increasing number of elements. Use
of Eq. (2.33); Mode I, p = #.




1.0
1 EXTRAPCLATION OF
NUMERICAL RESULTS error =~ const./ N
09 TO N—=c

(N =numbexr of finite elements)

3

10 20 30 40 50

1000

Fig. 3.h4: Extrapolation of numerical results to
infinite number of elements, using
Eq. (2.31); Mode I, p = %.
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>
exact value of A) ‘
(after Benthem)- "
09 - , ‘
| ¢ d gaf ||
® oo Numerical results for a / 9’¢ . : 1
grid of N finite elements - / ;i |
solution
0.0 0.1 0.2 0.3 0.4 0s
\Y
i
Fig. 3.5: Singularity exponent )\ for various ; :
values of Poisson ratio; Mode I, i ﬂ
p =%




this solution assures the existence of an infinite enumerable eigen-

values for the problem, e.g., other solutions can be gotten for
p=0,%1,...,. Hence, Fig. 3.5, is not a complete solution, unless

v =0,

B.) Symmetric opening, Mode I, p = O.

The author is obliged to John P. Benthem, Professor at Delft
University of Technology, for clarifying, in a private communication,
the value for p from the implications of his analytical solution.

The choice p = % in previous computations, Fig. 3.5, was in-
appropriate for the complete solution, because a restriction is pre-
scribed to the displacements, similar to that of a generalized Fourier
series which would represent the displacements, thus, limiting their
complete and natural dependence on the angle 8 for which the smallest
eigenvalue should exist. ILet (rp)p, Eqs. (2.la-c) be the te.m with
the lowest exponent in the field near the singulérity line, (crack front
edge p = 6 = 0). 1Indeed, p = } is the lowest p corresponding to the
deformed states for crack front singularity, but where the displacement

field behaves like:
u,v,w ~ 9% ; 820 , 0<r<o . (3.9)
and stresses (displacement gradiemts), like:

Une_%

820 , 0<r<ea. (3.10)

.
’
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However, in the neighborhood of the singularity line (ecrack fromt
edge, 6= 0) one may have values of p = (, %Q, 1, ... etc., as was
proven in Section 2.24, Eq. (2.6). In otherwords, Eq. (3.9) does
not mean that there are no displacement fields starting with the
stronger exponent p = 0,

u,v,wmb’; 80, O<r<o . (3.11)
The exponent p = O does not give rise to stresses

-1
o~8 " 3820, 0<r<e=. (3.12)

In otherwords, the term (p)p does not cause any singulatiry as p = O,
or § 2 0, at a finite fixed r. However, this may cause functions
F(8,p), and H(O,p) to have gradient singularity of the type oPH, or
Sq, as ¥ » O, where q > -1. This singularity would be more severe
than the singularity 9'é associated with the planar near tip field.
That terms of eq, q> ~1 as r » o should indeed be present is indicated
by Benthem's solution {9]. This will still satisfy the restriction
that along the crack front edge the strain energy must remsin finite,
i.e., the behavior 89 of the stresses along the crack front edge be
such that q > -1.

Therefore, all finite element sclutions were rerun with the

exponent p = O. The numerical results are given in Table 3.6, and are

compared with Benthem's results. Again, as expected, the error de-
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creases considerably by using largér number of elements. Also, the
more Poisson's ratio v deviates from zero the larger the error, due
to the value of Q = 2/(1 - &), Eq. (1.17a). Obviously, Q will induce
numerical inaccuracies which are well known to occur in all mumerical
methods of this type.

It was fortunate that for the results obtained in the previous
section, p = %, the convergence rate m was known "a priori' and
proved grafically to be quadratic by employing Eq. (2.31). For the

case p = 0, for which

£(8,0) = F(8,0), 8(8,9) = G(8,8), h(¥,8) = H(8,0) (3-13)
while p = & is also present, the convergence rate must be less than
quadratic. But, since the exact, or nearly exact solution is available
[9], Eq. (2.31) can again be used grafically to find the value of m,
as shown in Fig. 3.6. The extrapolation points (or regression lines
N - o), are shown in Fig. 3.7. These points are then compared with
Benthem's solution in Fig. 3.8, showing both solution coinciding with
each other within a 0.002 deviation.

Because the gradient of F(8,¢), G(8,4) and H(6,4) might tend to
infinity as 6 = 0, it seems appropriate to refine the grid step A6 as
© decreases. Irregular rectangular net works in which A¢ was con-
stant and in which A6 was refined so as to keep A8 roughly equal
(sin 6)A¢, have been tried, using same numbers of subdivisions in
both & and ¢ directiomns, as shqwn in Fig. 3.9. Although the

numerical results for the same maximum size element (regular grids)

SRS R} et gt et T - r—e G £t e 1
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number of elements
exact solution (Benthem)

Fig. 3.6:

Determination of the rate of convergence with

increasing number of elements. Use of Eq. (2.31).

Insert: Search of eigenvalue using Eq. (2.26).
Mode I, p = 0.
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0.8 L

0.55-'--'——"' +—)\:=05164 ~Benthem's solution

a) " Numerical Results for Various Grids
MODE 1 (Symmetric opening)

N = number of finite elements |
/|
/

(p=0)
/ /i

N—=-—® coincides with

A Armcamedn 1 i

0.l 0.2 0.3 04 0.5
v

Fig. 3.8: Numerical results for orthogonal crack,
Mode I, p = O.




were better than those for the refined (irregular grids),

the extrapolated values for the refined grids were no better than
those for uniform subdivisions. So, non-uniform subdivisions of the
meridians would be ineffective.

Recently, Rawai, Fujitani, and Kumagai [10] also presented
analytical solutions for the same problem (orthogonal crack). They
obtain three roots for all Poison ratios which disagree with Benthem
[9] as well as the present work. For example, the smallest root [10]
for y = 0.3 is approximately ) = 0.3. The insert of Fig. 3.6 shows
the value of Q, which must be zero in the search of the eigenvalue,
Eq. (2.26). The curve that Q versus ) traces is smooth and continuous
Therefore, no eigenvalue near )\ = 0.7 for Q = 0 could have been
missed.

Furthermore, the program was checked against the analytical and
numerical solutions for a sharp corner of angle 2g on the crack fromt
edge of a planar crack whose complement 1s the wedge-shaped punch
of angle 2@ within an infinite elastic solid, see Fig. 3.10. The
solution for this symmetric opening (Mode I) of such a crack was
given in [3], where a finite difference solution was based
on a reduction to potential theory. Very accurate solutions, by
means of singular integral equations, have recently been obtained
by Keer and Parihar [13]. Both solutions [3,13] have found that for

symmetric opening, the eigenvalue is independent of Poison ratio

for a fixed angle 2q.
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Fig. 3.10: Crack corner in an infinite elastic
space. (The unit sphere is not the
body surface; it is used to visualize
the spherical coordinates; the body
is infinite.)
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Fig. 3.11: Finite element grid used for the crack
corner in an infinite elastic space.
Domain 0'ACO' from Fig. 3.10 visualized
in the (8-¢)-plane.
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Because of symmetry sbcut ¢ = v and ¢ = 8, one needs only to
consider one quarter of the unit sphere as shown by the dashed lines
of Fig. 3.10. The bottom side of the domain, 6 = a/2, is a great
circle around the unit sphere, which in the (6-¢)-plane is given by

the equation

8 = 8, = arctan (tan g/cos ¢); if g < 0, then § « 8 + ¢ (3.14)

where g = ¢/2. The §-coordinates of the nodal points on the r-th curved

row, Fig. 3.11, are calculated as

8 = 8,(r-1)/(r,-1) (3.15)

where r, 1is the number of the last row, § = 8y and r = 1 corresponds
to § = 0. Eq. (3.15) describes a uniform subdivision of each meridianm,
as shown in Fig. 3.11.

The stress and displacement conditions at ¢ = gy have already
been discussed in the previous section. The displacement conditions
at the bottom boundary (eb)’ must be replaced by displacement boundary

conditions of symmetry:
veos N-wsin N=0, atp =8, (3.16)

where 0 is the angle that the bottom boundary makes with the g-axis
in the (9-¢)-plane, i.e., the normal displacement of the bottom nodal

points is zero. The stress boundary conditions g = cer = 0 at




o= eb will be automatically satisfied by the finite element

method.

Table 3.7 gives the numerical results for the cases of y = 0

and 0.3 for g = 5/, chosen for examples. Using Eq. (2.31) the
values of m are graphicallycalculated in Fig. 3.12. Finally, the
extrapolation point are obtained in Fig. 3.13, and compared to the
values )\ = 0.296, calculated in [3] and ) = 0.2966 in [13]. Indeed,

the eigenvalues are independent of Poisson ratio for a fixed q. The

fact that all three values () = 0.2906 obtained by different researchers,

using independent methods of solution), are the same, further confirms

that the present solution is correct.

Now, the question arises for the value of the convergence rate
m when no exact solution is available and hence Eq. (2.31) cannot be
used as before. For such cases, the extension of Richardson's n"
technique, described in Section 2.3D, was found to work exceptionally
well. All numerical results were run in a simple subroutine, which
is included in the program, Appendix B. The m-values are given in
the preceding Tables, next to their corresponding numerical values.
The extrapolation values for all cases thus far studied came within
0.4 error, as shown in the tables. Again, reaffirming the present
method of solution and justifying the use of the extrapolation tech-
nique proposed in Section 2.3D. For the sake of brevity, whenever

an extrapolated value is mentioned herein it will refer to this

technique, unless otherwise specified.




~a) MODE I (Symmetric opening)
N=18 B = 34T
1.0+
© 124
$
[ . .
~<
$
~< 2% o
m .....
°
' 4 N=128
16 )\exact : 0.2966
N = number of finite elements
18 +- } —- }
0.6 U/ 08 09 10 11
1/2 log N
Fig. 3.12: Finite element convergence pattern for

right angle cormer at front edge of
planar crack inside elastic body.
Mode I, p = Q.



r a) MODE1 (Symmetric opening)
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\=0.2966
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0.25 —— 4 + —+ +

0 20 40 60 80 100 120 ¢

Fig. 3.13: Extrapolation of numerical results to
N o o for the case in Fig. 3.12.
Mode I, p = O.
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Note that the extrapélation'vulue in the subroutine corresponds
to the first coefficient of the straight-line with optimum slope m,
i.e., the value of the regression line at h = 0, N » =.

A final check was performed on the orthogonal crack in Fig. 3.1, %
for Mode I opening. It consisted of including the entire (f-g)-domain
of the unit, sphere, i.e., 0 £ 6 £ /2, 0 < ¢ < 2r; where no symmetry
considerations need be made. One node may be fixed in the g-direction \
to prevent rotation and thus implement a statically determinate sup-
port for the body. However, since rotation implies ) = 1, see Section

3.2A, the support is normally not necessary unless ) = 1. This also

means that in this finite element method it is sufficient to impose
only one force at a nodal point to achieve the mode required, and
not two forces of opposite direction applied at two opposite nodal
points.

Thé numerical results are given in Table 3.8 along with the

convergence rate m and the extrapolated value for the case y = 0.15,
but excluding the value for N = 18, 1If this last value were to be

included ome would obtain m = 2.6 and ) = 0,5267. However,

extrap.
note that N = 18 in the domain 0 £ § < /2, 0 < ¢ < 27 is a very
coarse mesh, thus, inducing an error which would not be of the order
O(hm), m < 2. Since the convergence rate fs to be limited by

m £ 2, as mentioned earlier in Section 2,3C the value for N = 18

has to be excluded, even though the extrapolated value using all four
points is within a 2% error. And as a rule of hand, so will future

values for N = 18 when the entire domain is included. For such cases,

the number of finite elements will be raised to 200 and 288, where
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one would again expect a convergence rate less than quadratic and

i
) more accurate results. l

C.) Antisymmetric openings, Mode II and III.

For antisymmetric crack openings the question of proper anti-
symmetric conditions at ¢ = ¢y and at the free surface § = /2 are
more complicated than for the symmetric opening. It appears that

Modes II and III cannot exist seperately at the surface point (which

it

was first suggested sy Professor L. M. Keer of Northwestern University
in an uncontested $5.00 bet). Indeed, it is impossible to imagine
conditions of zero stress state at the half-space surface (§ = f/2) to
be satisfied by a displacement field which would exhibit either

Mode II or Mode III antisymmetry. The finite element claculatioms

confirmed this also; 1.e., when the full domain 9¢(0,7/2), ¢e(0,2m)

was used and Mode II antisymmetric displacements were forced in two
symmetrically opposite nodes at the crack surface (n = 1 at ¢ = /2
and n = -1 at ¢ = 317/2, both at @ = /2), the v displacements at

g = n/a were found to be nonzero and exhibit perfect antisymmetry

about ¢ = gy which is characteristic of Mode III. Furthermore, a
surface nodal displacement was forced such that Mode III opening
would be obtained, i.e., the v displacement at the crack surface.
However, the eigenvalue slowly converged to the same eigenvalue when

Mode II opening was forced. Thus, the antisymmetric Modes II and III

are always combined at the surface point.

Therefore, one may impose at ¢ = 11, the symmetry plane, either
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Mode II-type condition: u sin g - v cos § = O, or (3.17)
Mode III-type condition; u co § - v sin § = 0, (3. 18)

or any linear combination of these two conditions, among which the

simplest choice is

u(e,m) = v(e,m) = 0. (3.19)

The antisymmetry condition for stress in both modes is c¢¢ = 0 at
¢9 = 1w, which is again automatically satisfied by the finite element
method as a natural boundary condition.

The singularity exponent ) in either case is the same, and
because_it belongs to a combination of two modes, ) is a double root. %;

Table 3.9 gives the numerical results when Eq. (3.17) is used
and Table 3.10 gives the numerical results when the full domain
0¢(0,m/2), ¢e(0,2rr) is used where no symmetry analysis is made. The
extrapolated values in Table 3. 10 differ significantly from those
of Table 3.9. Hence, at this point it was necessary to increase the
number of finite elements to 288 for the domain ¢¢(0,217), as shown in
Table 3.10 for the case yy = 0.3. This case yielded the same extra-
polated value as that obtained from the domain ¢¢(O,rr). Fig. 3.1k
shows the numerical results of Table 3. 10 with the extrapolated

values of Table 3.10. Note that for the case y = 0 the eigenvalue




v/N 18 32 T2 128 m Next nLBenthem
0.15 0.78917T5 0.639575 0.572169 0.54975h4 1.99 0.5234 0.5164
Table 3.8: Numerical results. Eigenvalues for

orthogonal crack with full body; 0<gsn/2,

0<¢<2qm; using N finite elements.
Mode I, p = 0.

v/N 18 32 T2 128 m )‘extrap.
0.0 0.612712 0.564782 0.529639 0.51T06T 1.926 0.50001
0.15 0.551476 0.500448 0.L463557 0.450516 1.966 0.L43533
. 0.3 0.521529  0.L466533 0.426113 0.411730 1.922 0. ko207
0.4 0 530050 0.465491 0.4%15043  0.398513 1.860 0.39591

Table 3.9: Numerical results. Eigenvalues for

orthogoual crack, 0s6<m/2, Os@<q; using

N finite elements. Modes II and III.

v/N 32 T2 128 200 288 Nextrap.
0.0 0.69836 0.597145  0.555897 1.580 0. 48432
0.1 0.653%992 0.545166 0.504840 1.842 0. 44715
0.15 0.639572 0.528586 0. 48778k 1. 862 0. 43030
0.3 0.616785 0.498913 0.4540S53  0.432559 0.L42057T 1.880 0.L40202 |
0.4 0.635112 0.506881 0. 452256 1. 842 0.34790
Table 3.10: Numerical results. Eigenvalues for orthogonal

crack with full body; 0s9<n/2, 0<¢<2m; using
Modes II and III.

N finite elements.
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b) Numerical Results for Various Grids
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~. N=32 .
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+
1 N=number o finite elements
(p=0)
0.3 P + -+ —+ }
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Fig. 3.1k Numerical results for orthogoaal
crack, Modes II and I7I.
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b) MODES I and II {Antisymmetric

B =30 opening)
N=18

......

......

| 1200, Mexact = 0.2966°

1.4 1
H 025 . 2 03285
T Nexact N=128
N = number of finite elements
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0.6 0.7 0.8 09 1.0 11

1/2 log N

Fig. 3.15: Finite element convergence pattern for

right angle cormer at front edge of

planar crack inside elastic body.
Modes II and III.
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- b) MODEST and I (Antisymmetric opening)
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040+
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I (exact) |
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1000/ N™?

Fig. 3.16: Extrapolation of numberical results to
; N » o for case in Fig. 3.15. Modes II
' and III.
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is exactly ) = 0.5, which was again expected. No solution seems to
exist in the literature concerning Modes II and III for comparison
in Fig. 3.1k,

The antisymmetric opening, Modes II and III, was also checked
against the known analytical solution of a crack cormer in an
infinite eldastic space, Fig. 3.10, page 84 solved by Keer and
Parihar [14a], They found that the solution for these modes to be
irreducible to potential theory and to depend on Poissom ratio .
For example, for a crack corner of angle ¢ = n/h the eigenvalues
A = 0.2966 and 0.3285 were obtained for Poissén's ratioy = 0.0
and 0.25, respectively. Table 3.10a gives the numerical results
for both cases. Figs. 3.15 shows the convergence pattern using
Eq. 2.33 and Fig. 3.16 the extrapolated values using the convergence
rate m oﬁtained graphically from Fig. 3.15. The values for m and
A using Eq. 2.39 are also given in Table 3. 10a.

extrap.

3.4 Crack Propagating at the Surface

From the practical point of view, the case of a propagating
crack is of main interest. There exist certain physical restrictions
for the solution of a propagating crack which can be derived from
energy considerations. For cracks that do not propagate, the only
restrictions are that the strain energy within a small sphere about
point 0, as well as the strain energy per unit length of edge within
a small cylinder whose axis coincides with the crack front edge 00',
?13. 3.1, be integrable. Let the strain energy by denoted by Eo’

then
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behave like:
\li ~ Y
where ~ denotes proportionality.

A-1
aui/ar ~

-1
cij "~ fk

O'ij ~ r)\-l

dv ~ rzdr

yields,

Eo ~ r2)\+1

quires

Hence,

(3.20)

The above expression can be simplified by asymptotic analysis.

Noting that near the surface terminal point O, the displacements

(3.21a)

(3.21b)

(3.21c)

(3.214)

(3.21e)

(3.22)

For the strain energy to be integrable, or bounded, as r » 0, re-




Re()) > -% , stationary crack. (3.23)

As the crack propagates, energy flows into all points of the
crack front edge and is comsumed by the process of separationm, i.e.,
creation of crack surfaces. The energy flux near the points of the
crack front edge may generally have two components: (a) The flux
El which is parallel to the edge and flows into any point on the
crack front edge, including the surface point 0. E, must be zero
because the trace of the surface point 0 as it moves is a line,
and a line can be associated only with a negligible amount of ad-
ditional surface energy. (b) The flux Ez of energy into the moving
crack front edge per unit length of edge must be finite and non-

zero because the surface energy v is finite and non-zero.

The first condition (a) requires that

El = J.J.Q Uij(auj/ax) do =0 (3' 21")

where 044 is the cartesian stress tensor; uj are the cartesian dis-
placements; x is the coordinate in the direction of the crack ex-
tension; and () is a surface of a sufficiently small sphere centered
at point 0. Noting that dn = r2sin ¢ dodg, and from Eqs. (3.21), it

follows that El ..ral, and for E, to be zero as r «+ 0, it is necessary

that

Re(A) > 0 ’ (3.25)
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which is a weak condition on a propagating crack.

The second condition (b) requires that

Ez - IL Uij (B"i/ax) r1d¢ (3'26)

vhere (r1,¢) is & polar coordinate system in a plane normal to the
crack front edge; L is a circle of radius T, in this plane centered
around the edge; x is the direction of crack propagation; u, are
the cartesian displacements; and cij is the cartesian stress tensor.
Also, the energy flux 22 may in general be expressed by Rice's
J-integral [23,31] fof linear elastic behavior:

, ,
E2 = IL oy e -0y vy 5 1) G-2)

in which dy = r, sin ¢ dg and a/ax = cos ¢(a/a£1) - (sin ¢/r1)
(a/a¢). On physical grounds, the flux E2 must obviously be positive,
non-zero and finite at all points near the surface terminal point 0
of the crack front edge. Furthermore, the flux E2 may be expected
to be constant along the crack edge, assuming that the enmergy needed
for the creation of new surface is the same along these points.
However, this last requirement may be simplified by the asymptotic
deductions. When Eqs. (3.21) are substituted into Eq. (3.27), it

follows that (~ denotes proportionality)

By mr 0 (3.28)
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Thus, for E, to be bounded and non-zero as T, - 0, it is necessary
that Re(2) - 1) = 0, or

Re(\) = &, propagating crack (2.39)
This condition must be satisfied for the terminal surface point of a
crack that propagates, but not for;- a stationary crack, as it is well

known [23,31).
According to Eq. (3.29), a crack which propagates, or for

which propagation is imminent, must exhibit ) = % (the exponent being :

assumed to be real if there are no two dissimilar materials). By

far, this case is of the greatest practical interest. Therefore, ]
a meaningful question is to ask whether there exist inclinations B
of the crack front edge Fig. 3.17 and y of the crack plane Fig. 3.18,
for which the eigenva;ue A = % is attained. For the orthogonal
crack edge (g8 = n/2, y = 0; Fig. 3.1), propagation is obviously pos-
sible only if y = 0.

Tables 3. 11 and 3.12 give the numerical results for the symmetric

(Mode 1) and antisymmetric (Modes II and III) cracks whose plane is

normal to the surface (y = 0) and whose edge inclination angle g

I e s G i e

varies for various values. The extrapolated results are plotted im

Fig. 3.20.

It is interesting to note that the solutions presented in Fig. 3.20
agree with the common sense that as the crack "size" defined by the
edge inclination angle g decreases, i.e., there is more material
that is not cracked, the eigenvalue ) increases; and as the crack
Ygize" increases, i.e., there is wore material that is cracked, the
eigenvalue ) decreases. In other words, the stress singularity

exponent )\-1 increases (weaker singularity) as g decreases and




Fig. 3.1T:

Fig. 3.18:

Spherical coordinate system at termination
of crack front edge 00' at body surface.
Inclined edge. (The unit sphere is showmn
only to visualize the coordinates; the body

{s semi-infinite).

Spherical coordinate system at termination
of crack front edge 00' at body surface.

clined edge and inclined crack plane. (The

dhdard s - - I

unit sphere is shown only to visualize the co-

ordinates; the body is semi-infinite).
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decreases (stronger singularity)'as g increases. Also note that
the lines in Fig. 3.20 are not straight lines and they seem to ap-
proach A\ = 1 for g » 0, i.e., there is no crack and one would ex-
pect rotational effects to take place, see Section 3.2 A; and they
seem to approach )\ = 0 for g » 11, i.e., the semi-infinite body is
completely cut in half and one would expect rigid body translatioms
to take place.

In order to substantiate the accuracy of these results, the
approach to the eigenvalue problem was modified by treating the
stiffness matrix as a function of angle g rather than ), i.e., )\ was

fixed to 0.5 and Eq. (2.27) was treated as:

M
jZlkij(B) xj = 0’ j = 1’23"',M (3‘29)

The eigenvalue search routine based on the Newton method was easily
converted to search for 8 instead of ). This alternate method was
tried for the case y = 0.3 in Mode I opening and drawn separately in
Fig. 3.21(a). The numerical results obtained by this method and based
on up to 288 elements are given in Table 3.13. The convergence
pattern of s—versus N is shown in Fig. 3.21(b) along with the extra-
polated value (N - ) which yields the same value as that oBtained
grafically in Fig. 3.21(a). Therefore, the values of g8 for each
value of Poisson's ratio for which ) = 0.5 from Fig. 3.20 are drawn

in Fig. 3.22.
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Fig. 3.22:

Dependence of crack front edge angles Q

of a propagating crack upon Poisson's
ratio v. (a) Mode I, (b) Modes II and
III. (Normal crack plane).
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The physical meaning of the edge inclination angle g for which
A = 0.5, is that for a propagating crack the symmetric opening,
Mode I, gives an obtuse angle (r > n/2), i.e., the surface pont 0
trails behind the interior crack edge; and the antisymmetric opening,
Modes II and III, gives an acute angle (B < n/2), i.e., the surface
point O moves ahead of the interior crack edge. The fact that they
are different has an important physical consequence: At the terminal
point of a crack whose plane is normal to the surface a combined
mode propagation is impossible, i.e., the crack would assume such a
shape that its surface terminal point propagates either with a sym-
metric opening, Mode I, or with an anitsymmetric opening, Mode II and

I1I, but not both combined.

In view of this result, it is natural to ask whether there exist
an inclination angle y of the crack plane for which the r-values for
the symmetric and antisymmetric exitation of a propagating crack
(A = 0.5) would coincide, see Fig. 3.18. However, the numerical results
given in Tables 3.14 and 3.15 for the case y = 0.3 and drawm in
Fig. 3.23 indicate that this never occurs, and as the crack plane becomes
inclined (& #0), the B8 - values for Re()) = 9& vary as a function of §.
In these cases it is no longer possible to distinguish between symmetric
(Mode 1) and antisymmetric (Modes II and III) openings, for there is no
geometrical symmetry. For each of the two B~values, there exists at
point 0 a certain limiting ratio Kl: K2: K3 of the stress intensity
factors for Modes I, II and III and no other ratios are possible. So,

for cracks of inclined plane, the propagation of the surface point takes

place always in a combination of all three modes. Conversely, for a
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( angle y. (a) Mode I, (b) Modes II and
III. (v = 0.3)




given ratio Kl: KZ: K3, one can generally find the angles 8 and §

which must get established at the surface point.

In solving this problem one must take into account the entire
domain 0 < § €8, y< ¢ < 21 + y, because the symmetry is destroyed
when y > 0. Fig. 3.19 shows a typical finite element grid in the
(-¢)-plane corresponding to the domain enclosed by the dashed curve

of Fig. 3.18.

3.5 Experimental Fracture Specimens

Some recently obtained experimental results allow a check on the

present numerical results. These are the fatigue loading fracture i

tests made by P. D. Bell and W. J. Feeney [15], to whom the author
i8° obliged for making gheir results available, and are reproduced in
Figs. 3.2k and 3.25. These photographs show the crack arrest marks
observed in fatigue Mode I fracture tests of alluminum alloy and
titanium alloy specimens. The Poisson ratios of these materials are
(according to material handbooks) about 0.33 and 0.32, respectively,

and for which the present solution, Fig. 3.20 gives g8 = 102° for bath

mater?als. These angles are plotted and compared in Figs. 3.24% and
3.25. Comparatively, the observed trend agrees with the numerical
resutls in that the surface point trails behind the interior crack
edge (i.e., B > 90°) rather than moving ahead. The numerical value

does not agree too closely with the observed average, but considering

that some small scale yielding and inelastic strain reversals occur

in the actual tests, and that the plastic "shear lip" phenomenon can
along cause B > 90°, the comparison cannot be qualified as poor. 3

One must also realize the inevitable statistical scatter of the

experiment.
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Fig. 3.25

(v = 0.32, Mode I

crack, sheet width 6.35 mm (1/k in.), magnification

(Reproduced

from Fig. A.6 on p. 167 of P. D. Bell and

33 times, crack propagates upwrads).
W. J. Feeney [15]).
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The crack arrest marks indicate the line of constant ) = % for
which propagatibn is established. The curves that these marks trace %
may be explained in the following manner. Prior to propagation, the
two-dimensional theory of fracture mechanics gives )\ = % for the
interior of the specimen (plame strain in the middle regions and
plane stress near the surface) while A > % will hold at the surface
point. When propagation is established the interior edge () = %)
will move perpendicularly to the crack independent of Poisson ratio,
while the surface point (weaker singularity, A > %) will have to
reach ) = & by allowing the crack edge to shift angles and thus moving

behind the interior, as predicted in Fig. 3.20.

3 Even though experimental results are nonexistent for Modes II
and III, a similar reasoning may be made. Again, the two-dimensional
3 theory of fracture mechanice gives ) = & for the interior points

3 while ) < & will hold at the surface points. When propagation is
established, provided the propagation plane remains in the same plane
as that of the crack, the surface point (stronger singularity ) < %)
will have to reach ) = % by allowing the crack edge to shift angles

and thus move ahead of the interior, as predicted iu. Fig. 3.20.

32,6 The Two-Material Interface

In plane elasticity, the singularity exponent of an interface

crack between two dissimilar materials is complex. Consequently,

the displacements in a close enough neighborhood of the crack tip
oscillate along the radial ray. This implies an overlap of crack

faces which is, of course, physically impossible and is prevented by




contact of crack surfaces. Nevertheless, it is generally believed

that the field for complex ) ir at least applicable in not too close
neighborhood of the crack tip, well beyond the region of oscillations.
That this is indeed the case for Mode I cracks has been demonstrated,

by Comninou [22]. It must be noted, though, that recently more
physically meaningful solutions which take into account the contact
stresses on crack surfaces have been developed [22], but their adaptation
is beyond the scope of this program. Thus, while extension of these
developments to three dimensional singularities should be of high
priority, at present we must be content with the less than perfect

oscillating singularity.

The foregoing solution applies without any change to cases

where ) is complex. Then, of course, k ., and X,, Eq. (2.15), must

ij bl
be also considered complex and the program must be converted to
complex arithmetic, which is easily achieved by proper type declara-
tion of FORTRAN variables. Some difficulties were caused by the need
of an equation solving subroutine for complex banded nonsymmetric
matrices. Such subroutine has not been ivailable in standard soft-

ware packages, and so it had to be developed, and it is listed in

Appendix C, page 1l44.

A.) Check cases.

In the first four sections of this chapter it was noted that the
convergence of the eigenvalue as the number of finite elements in-
creased was systematic and an extrapolation technique was thus developed.

In the check cases where the eigenvalues are complex, the real part
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was found to behave equally well, but the complex part did not. In-

stead, the complex part of ) gave nearly the exact value for any

number of finite elements. These check cases were the well known

two-dimensional interface crack solutions and the problem of a rigid

corner stamp of angle 28 which was solved by Parihar and Keer [14b].
The two-dimensional solution for the exponent is given by

[32,33]

A=3+ iyl (3.30) :i
where,

. K
Ly L+ 2 .31
/(= + )] (3.31)

and Ki =3 - hvi for plane strain, (since generalized plane stress

cannot be modeled by the program).
For a study case, materials whose Young's moduli have the ratio
El/E2 = 1/40 and whose Poisson ratios have the same value Vi TV =
0.3, were chosen. For these values Eq. (3.31) yields Y, = 0. 0887.
The domain to be considered must be 0 < § £ /2, 0 = ¢ < 21, where
the elements in the region ¢ > m have a Young modulus forty time larger
than those in the region ¢ < 11, but both regions have the same Poisson
ratio Vg =V = 0.3; and to simulate the two-dimensional problem sup- -
ports perpendicular to § = 1/2 must be placed. The numerical results
were: ) = 0.65047 + 0.065481; 0.573290 + 0.085281; 0.54288 + 0.087851

for N = 32, T2, and 128 elements, respectively. The extrapolated




value of the real parts gives 0.49709 which is within 0.4% error of
the exact value of 0.5. Note that the imaginary part of the eigen-
value using 128 elements is already within 1.5% error. When v = 0
for both materials, the plane strain solution [33] also applies for
the surface singularity with an orthogonal crack edge; for a 2:1
ratio of young moduli this gives X = 0.5 % 0,0535i; whereas, the

program yielded Im (X) = 0.0514 for N = 128.

For the second study case, a rigid corner stamp of angle 28 =
0.28861 on a semi-infinite body of Poisson ratio y = 0.3, were chosen
from the table in Ref.[1l4b] where the analytical solution is given
by 0.2474 + 0.04091i. The numerical results for this problem were
A = 0.370kk + 0.04393i; 0.3128 + 0.04532i, 0.28804 + 0.045001 for
N = 32, T2, 128 elemehts, respectively. The extrapolated value of

the real parts is 0.241, again within O.4%; and that the imaginary

part using 128 elements is within 10%. There may be two possible
reasons for the imaginary part to be in such relatively large error:
a.) The representation of the exact domain with finite elements is
not very accurate for such angle g, which unfortunately was the
largest angle that Parihar and Keer could consider, b.) The ana-
lytical solution obtained by Parihar and Keer involves an approximate
function substituting a Bessel function, which restricts them to
consider only small angles.

In either case, the solutions obtained with the present pro-

gram show that numerical results can be obtained with reasonable

accuracy.




B.) Additional results

Further cases were run using the present program for which no
solutions have been given before. These were the results for v > 0.
i.e., the plane strain solution is not applicable.

a.) The singularity for an orthogonal crack edge of an inter-
face of two materials with a Young's moduli ratio of 2:1 and equal
Poisson ratio, the program gives Im(A) = + 0.0399 (N = 128) for
v =0.05 and Tm (A) = £ 0.006 (N = 128) for v = 0.3. It can be
noted that Im () decreases with increasing v. For v = 0.3 and a
30:1 ratio of E, the program indicated Im ()) to be 0 or almost 0.

b.) For these cases, the program again showed Im (A) to be
close and almost 0. For an interior crack plane of an orthogonal
two-material interface; the program indicated that a crack with a
front edge orthogonal to the two-material interface has X = 0.545,

0.521, and 0.499 for E - rations 1:1, 5:0 and 10:0 for v = 0.3 (N » =),

3.7 The Notch Surface Singularity

Solutions for the surface singularity at notches have not been
given before. The present program can readily handle notches with
higher accuracy since the mat?rial domain decreases with the size of
the notch angle. Fig. 3.26 shows the numerical results (N + =) for
notches terminating at the sﬁrface with orthogonal (B=7/2) and sym-

metrical opening (v= -a).
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CONCLUSIONS

The finite element method in angular spherical coordinates provides
a powerful general tehcnique for determining three-dimensional elastic
stress singularities. The numerical results for cracks whose edge is
normal to the surface and for crack corners in an infinite space are
in close agreement with the analytical solutions of Benthem, and Keer
and Parihar, respectively. The front edge of a propagating crack
must terminate at the surface point obliquely. The values of this
angle are different for symmetric (Mode 1) and antisvmmetric (Mode II
and III) crack opening; which indicates that a combined mode propagation
is impossible at the surface point of a crack whose plane is normal to
the surface. For Mode I, the surface point trails behind the interior
of the crack; while for Modes II and III, the surface point moves ahead
of the interior of the crack. For cracks of inclined plane, the
propagation at the surface point takes place in a combination of all
three modes.

The numerical results for a rigid corner stamp on a semi-~infinite
space are also in close agreement with the complex analytical solution
of Keer. Some numerical results of complex singularities are obtained,

as well as some cases of notches.
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APPENDIX A

DERIVATION OF THE
VARIATIONAL EQUATION

The combination of the equations of equilibrium, Eqs. (l.Ta-c)
with the boundary conditioms, Eqs. (1.1la-c) is given by the vari-

ational statement Eq. (1.12). With the intention of using the

finite element method, Eq. (1.12) has to be reduced to an equation

which involves no higher than first order derivatives and which
automatically includes the boundary conditions. In the following
derivation the asterisk * indicates terms, or term, which have been
added and substracted.

Substituting X ,X,, and X¢ from Eqs. (1.Ta-c) into the surface

integral of Eq. (1.12) yields

1

sin @ ¢) +

m—r{[Q(l 1) -2 + 20]()F + 2F + Gy + G cot § + o

[(“'l)Ge - Fee]- cot B[ (A +1)6 - Fgl +

1 ( 1
sin @8

sin 5 F¢¢ -H¢ - xn¢)} sin @ &F

+ [2)\G9 + 2)G cot § + 2 H, - (21(3B + 2)\G cot @ +

sin 8 "¢
+ 2) H )]'sin 9 8F + {(Q+2)(\F,+2F,+G,,+G, cot § -
sin g ¢ 8 6 88 8
1 1 cos
- G+ H, - H ) - (a cot 9 -
sinae sin § "8¢ sinae ® sin sin 9 ¢
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2
sin §

Hy, = 26 cot“p -

)+x[(x+1)c-Fe]} sin 648G + [ 5

1
" Sin g Cg¢

2 2 % 1
- (sin 5 n9¢ - 26 cot 9)] sin &G + {sm 5 (Q+2)(AF¢ + 2F¢ +
+ Gy, +G cote+——LH)-x( 1F-H-AH)+(H +
%0 o sin § “¢¢ sin § "¢ 86 1
- 1 cos § R | -
+ Hy cot 9 —H H + 2o Gy = 3In B Ge¢)} 88 + [-2Rjcot § +
2 2 2 cos §
+ H+ G,. = G, - 2)H - (-2H.cot 8§ +
sin2e sin 8 8¢ sinae [} 6
2 2 2 cos 8 ®
+ H+ — G,, = —=—=G, - 2)\H)] sin 9 3H ||d8dg
sin° sin 8 00 54075 9 :U
(A. 1)

Arranging some terms and cancelling others (a light slash indicates 1

terms which cancel), Eq. (A.1) is reduced to: i

1
sin 8 H¢)

ﬂ[[[[Q(A - 1)-2](AF+2F+GG+G cot 9 +

L a4

1
+20(NF +2F + G, + G cot § + sin 8 ¢

5 sineH¢)'2"(Ge+G cot 8+

+ (J\c;6 - Ge + Fee) + cot 8(AG ~ G +F9) +
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1 1
* sin 8 (sin 8 F¢¢ * M-I¢ ) H¢)}sin 8 ¢F
1 1 cos §
+ {Q(\F,+2F,+G,,+G,.cot § ~- G + H, - 1)
] 8 66 B sin29 sin § 6¢ sin29 ®
+ 2(AFy + (1 +1)F, +Ggo +Gycot 6 - L—G+ — 5 By, -~ €y )
s1in°9 ® sing 9

+-—1—(H -H cot:e+—1—c )+ a(0+1)G - »F

sin § ‘'8¢ ¢ sin 8 ¢¢ 8

2 2 2
- 2G cot @ -mﬂe¢+2G cot @
1
+ [-Q cot 9(1F+2F+Ge + T 5 H¢ + G cot @)
2 L *

+ Q cot g(AF + 2F + Ge + 5 H¢ + G cot 9)] }sin 9 4G

-2 1
+ {sin 5 ()\F¢ +2F¢ + Ge¢+ G¢cot 8 + sin 0 H¢¢)
+ =2 (\F, + (1+1)F_ +6 + G cot g + L& )

sin § ¢ ) 8¢ ® sin 8 “¢o

1 1 cos §

+ (H,, - H.cotfh+ H + G, - G,)

L 8 sinee sin 0 8¢ sinee ®
- — - - 1

sin F¢+)\()\ 1)H+cote(He HcotG+sine G¢)+




+cote(He-Hcot:e+ 1 G)+(25§—e— 2——2—4-2)11-

sin @ sing

®

2 3
-2R - in B GB¢ + 2\H}sin Gaﬁll dedg

The terms multiplied by sin 6 8G are arranged to form:

{QO\Fy + 2Fgg + Gy + Gyeor § -~ —L— ¢ + 1 cos g o

sing smeHe¢ sin ¢ ¢)+

. .
+ 2((;ee + Fe) + cot e[Q(xF+2F+Ge+m H¢ + G cot 6)+

“ 1 1 1
+2(G6+F)]+sin9 (He¢-n cot § + Gw) - 2cot e(sin

? sin @

+Gcote+F)+)\()\+1)G+2Fe - Q cot e()_F+2F+Ge+

1 1 29
+STas B, +Gcot §) +)F, - 2( - £o8
ne ¢ 0 sin g sin &

-

- 1%)6-26*}s1n 8 8¢
(a.3)

Placing Eq. (A.3) back into Eq. (A.2) and rearranging terms:

JJ[[{[Q(X-I)-2](1F+2F+G +G cot g +—t H¢)+2>\()\+2)F

3] sin g

+ (me - Ge + Fee) + cot ()G -~ G + Fe)
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1 ( 1

+3in e sineF¢¢+)‘H¢-H¢)}smebF
1
+ {-Q cote(xF+2F+Ge+Gcote+sineH)+xFe
-2cote( H¢+Fcote+F)+2(xG-G+F)+x(¢ 1)6
1 1 Q
+ Q(\F, +2F, +G,, + G,cot § - G+ H n )+
6 ® 06 9 sin29 sin @ 6¢ sin 8
1
+ 2(G e *tFg ) + cot e[Q(),F+2F+Ge+G cot 8+57g ¢) +
+2(G,+F)] + L (H, -H cot §+ 1 tsin 0 &G
2] sin 8" 9¢ ) sin 6 ¢¢ ’
+ {cot e(ne-n cot 8+57-5 © ) + 2(sm 7 F¢+m -H)
A - 1 1 _cos 8
+ SIn B F¢ + A\ - 1)H+(H Hycot e+sjinge LR v Ge¢ sze G¢
1
+ cot e(He-H cot 6+ oo 5 G¢)
R 1
+3in s (\F +2F¢+Ge¢+G¢cot 0+ ¢¢)
2 1 ha
+ 1o 5 (sin 5 H¢¢+G¢cot e+F Y}sin @ 5}1_.~ dadg (A. 4)

which can be written as

i
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| 1
I_ﬂ:[{sin a(A-1) ~-2](\F+2F +GB+G cot §+37= 5 a¢)+2xsin a(h+2)F

2 [sin 6(AG-G+Fy] + 2 +3E-H]}g F

1
3¢ sin § ¢

+ {(-[(Q+2)(eF +¢

p*8 cot B+ H¢) -2(GS+F)+kQF]cot 8

sin 8
+ 2(1-*e ~G)Y+ (0 +1)G + u‘e)sin )

[sin e((q(u+2F+c +G cot § +——r )+2(G6+F)))]

@ sn6¢

1

+ iy -0 cot 8+ 2= RIES

{sin g[cot e(He -H cot 6+ G ) + 2(——=—F -H) +

sin § sin e ¢

A 2 - -
+)‘()‘+1)H+s1neF¢]+ [sme(u Bocot 6 + 7o ¢)]

1

.b_ 0
+ 3% [Q(u-'+2F+Ge+G cot §+ 7= H )+ 2(sm 5 H¢+G cot § +
+ F)}anﬂded¢ (a.5)

Integrating by parts with respect to § and ¢ the respective terms

whose partial derivatives are broughtout, and using the negative of

(A.5):
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jﬂsin e{[Q(l-x)+2](xF+2F+Ge+G cot e+$ii'l 5 H¢) -2)(A +2)F}aH

+ sin §(AG -G +F )ar +(sm 5 ¢+m-n)5§'¢

+ sin e{[(Q+2)(2F+Ge+G cot e+s]l 5 H )-2(GG+F)+)\QF)cot 85

- 2(1-‘e -G) -A(A+1) - xFelbc

1

1 sin e[Q(u'+2F+Ge+G cot 9+ g B )+2(GG+F)]5 c;e

1 d
+ (He-H cot e+sinec¢)5 Gqs A

- gin g[cot e(He-H cot e+si G ) +2( ~H)+)\(A+1)H +

sine ¢

3 -
J——sm F¢]6H + sin e[ae H cot 8+ 7= c¢)eue
1
+[Q(xF+2F+G9+G cof:e+si H )+2(smen¢+c cot §+F)]
5H¢]]d9d¢
. 1
; + ~_rr[{sm 8{(AG - C+Fy )8+ [Q(NF +2F +Gy +G cot B+ =5 H ) +




1
+ 2(Ge+F)]6G + (He-n cot § + 77 5 G¢)6H}ne

1 1

+ sin e{sin 5 (sin 5 ¢+)JI -H)§F + ~In e(He-!l cot § +
1 1
+ 3150 G¢)5G + 3in e[Q()\F+2F+Ge+G cot 8+57n e ¢) +
+ 2(sin 5 ¢ 4+ G cot § + F)]bH}n¢}}ds (A.6)

Substituting the boundary conditions, Eqs. (1. lla-c), and
Eq. (A.6) into Eq) (1.12) one can see that the line integral of
Eq. (A.6) cancels the line integral of Eq. (1.12). Thus, the boundary
conditions are automatically included, and the following variational

equation results:

rjl{{[q(l A)+2]()\F +2F +C6+G cot 8+

in e Hy) - 2A(A +2)F18F

1 ( 1

+ (AG - G+F )aF 6*sing (sin B F¢+)\H-H)5F¢

+ {[(Q+2)(Ge+2F+G cot e+si’:1l 5 H¢) -2(Ge+F)+)\QF]cot ) ﬁ

- 2(Fy-G) - AM(A+1)6 - AF 146

+ [Q(AF+2F +G

e+G cot Q+—5——=

) +2(G +F)]6G 3

1
sin @ ¢
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1
+ sin 5 (H -H cot 8+ 5 ¢)5G¢

“H)+) (0 +1)H +

1 G )+2(

- [ecot G(HG-H cot e+si sin 3 ¢

by 1
+sineF¢]5H+(H -H cot 9 +— P ¢)5ue -

1
H) 2(sine ¢+

[Q(A\F +2F +G_ +G cot 0+

+ 8

si.ne

‘ N
+ G cot 6+F)]6H¢J} sin § dpdg (A.T)

Note that Eq. (A.7) does not have any second order derivatives

and that the notations in Eq. (1.14) are those shown in Eq. (A.T).
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APPENDIX B

FINITE ELEMENT PROGRAM WHEN EIGNEVALUE, A, IS REAL
( See Chapte~ II).
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APPENDIX C

FINITE ELEMENT PROGRAM WHEN EIGENVALUE, A, IS COMPLETE
(See Chapter II).
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